autoevaluator
HF staff
Add verifyToken field to verify evaluation results are produced by Hugging Face's automatic model evaluator
7683e97
metadata
language: en
license: mit
tags:
- deberta
- deberta-v3
datasets:
- squad_v2
pipeline_tag: question-answering
model-index:
- name: navteca/deberta-v3-base-squad2
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_v2
type: squad_v2
config: squad_v2
split: validation
metrics:
- type: exact_match
value: 83.8248
name: Exact Match
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjFkNmYwODcyYjY3MjJjMzAwNjQzZjI2NjliYmQ4MGZiMDI2OWZkMTdhYmFmN2UyMzE2NDk4YTBjNTdjYTE2ZCIsInZlcnNpb24iOjF9.LgIENpA4WbqDCo_noI-6Dc2UmpufMqCLYAb7rZpEj33vqp4kqOkUGNaHC1iOgfPmyyeedk0NylgUEVmkS51lBQ
- type: f1
value: 87.41
name: F1
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2E3NWYxMTc2NDUzOGM3ZWUyNDA0NDRhNGEyY2QyYmFmZmJlNGYwZmRhMjljZmE2OTIyNmFlMmQ1YWExNDQwNyIsInZlcnNpb24iOjF9.oRi3d751NQo6jQfSWB3xuw9e54-UhjeiNRyiIjE6WgeYd5T3-oRuphubLwnhv8xQPYQqSih8VOuEYj4Qbqj-AA
- task:
type: question-answering
name: Question Answering
dataset:
name: squad
type: squad
config: plain_text
split: validation
metrics:
- type: exact_match
value: 84.9678
name: Exact Match
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGZkZWUyZjJlZWMwOTZiMWU1NmNlN2RiNDI4MWY5YTI3Njc3Y2NjMmYzMDYxYjUwOWI3NTMyOGQ1YjM5MjNhYyIsInZlcnNpb24iOjF9.1Ti7oa5RXpETbOlpHtKpKZ2gz0spb4kzkBfOG1LQGbFMp5v3sRz4u_LhSXYiS2ksJ3sJNz7yIMK8Ci5xT05ODg
- type: f1
value: 92.2777
name: F1
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWE0Mjc5OTE2NjExYzZiM2YyNjdjMjI5Nzk5MTkxZDcxNjMwMjU5MWNkOWNkOTRmMjk1OTczZGRiZGY2ZWRlYSIsInZlcnNpb24iOjF9.Gyhns0q1kBjiDgG7rE2X78lK4HATol9R2d53rWmdf6QamGb5qX2-d8tA48KTEP8WTCxvvvfOPV1es6qmMzN1BQ
Deberta v3 base model for QA (SQuAD 2.0)
This is the deberta-v3-base model, fine-tuned using the SQuAD2.0 dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering.
Training Data
The models have been trained on the SQuAD 2.0 dataset.
It can be used for question answering task.
Usage and Performance
The trained model can be used like this:
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
# Load model & tokenizer
deberta_model = AutoModelForQuestionAnswering.from_pretrained('navteca/deberta-v3-base-squad2')
deberta_tokenizer = AutoTokenizer.from_pretrained('navteca/deberta-v3-base-squad2')
# Get predictions
nlp = pipeline('question-answering', model=deberta_model, tokenizer=deberta_tokenizer)
result = nlp({
'question': 'How many people live in Berlin?',
'context': 'Berlin had a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.'
})
print(result)
#{
# "answer": "3,520,031"
# "end": 36,
# "score": 0.96186668,
# "start": 27,
#}