tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
Now let us conceive a particular volition, namely, the mode of thinking
whereby the mind affirms, that the three interior angles of a triangle are
equal to two right angles.
- text: >-
If we know beforehand what this state of affairs is, our desire is
conscious; if not, unconscious.
- text: 'The salvation of the soul in plain English: the world revolves around me.'
- text: >-
Masculine myths find their most seductive incarnation in the hetaera; more
than any other woman, she is flesh and consciousness, idol, inspiration,
muse; painters and sculptors want her as their model; she will nourish
poets' dreams; it is in her that the intellectual will explore the
treasures of feminine 'intuition'; she is more readily intelligent than
the matron, because she is less set in hypocrisy.
- text: " Since 2004, the Mandiant name has represented unparalleled security expertise, earning the trust of cyber security professionals and company executives across the world. By joining this unparalleled frontline experience with our industry leading, nation-state grade threat intelligence and innovative technology, we have ensured that FireEye knows more about current advanced threats than anyone. Today the world looks a lot different than it did in 2004. The cyber security industry has expanded (some might say exploded), but through all this change, one thing has remained the same: there is no substitute for world-class expertise and intelligence. With that in mind, we’ve continued to push the boundaries of innovation by expanding our expertise- and intelligence-backed solutions to stay ahead of market needs. Each is considered the gold standard in its respective space. These solutions include Mandiant Consulting, Mandiant Managed Defense, FireEye Threat Intelligence, FireEye Expertise On Demand, and Verodin Security Validation. Now, to streamline options and simplify the process of identifying solutions our customers need to proactively combat cyber threats, we are renaming our expertise- and intelligence-backed solutions to Mandiant, under the collective term Mandiant Solutions. The renaming of our solutions does not change pricing, content, or delivery today. Current subscribers of these services will continue to receive the same unparalleled frontline expertise they have come to rely on. As we move forward, the goal of Mandiant Solutions is to deliver synergies between these solutions to help customers improve security effectiveness by automating the security operations center and augmenting their security teams with Mandiant expertise and intelligence, regardless of the SIEM and security technology they have deployed.\_ Our Mandiant Solutions portfolio will include: Each of these offerings combines our technologies, intelligence and expertise, helping organizations meet evolving security challenges. Customers can be confident that Mandiant Solutions are backed by the industry’s best expertise and informed by the best threat intelligence available today.\_\_ For example, following the acquisition of Verodin last year, we’ve been actively integrating our market-leading threat intelligence with the industry’s most comprehensive security validation platform, now known as Mandiant Security Validation. This represents a significant benefit to our customers who can test and validate their organization’s readiness against the very latest techniques employed by today’s threat actors. Of course, our suite of enterprise solutions (FireEye Helix, Endpoint, Network, and Email Security) also benefits from and enhances this wealth of frontline expertise through our unique Innovation Cycle. It ensures that our products and services are able to learn and adapt to new threats faster and better than anyone.\_ As we look to the future, our vision is to continue to integrate these capabilities through a seamless, modern platform that accelerates our customers’ ability to measurably improve the people, processes, and technology they need to protect their critical assets.\_ Stay tuned for more updates as we rollout our renaming!\t\tSince 2004, the Mandiant name has represented unparalleled security expertise, earning the trust of cyber security professionals and company executives across the world. By joining this unparalleled frontline experience with our industry leading, nation-state grade threat intelligence and innovative technology, we have ensured that FireEye knows more about current advanced threats than anyone.Today the world looks a lot different than it did in 2004. The cyber security industry has expanded (some might say exploded), but through all this change, one thing has remained the same: there is no substitute for world-class expertise and intelligence.With that in mind, we’ve continued to push the boundaries of innovation by expanding our expertise- and intelligence-backed solutions to stay ahead of market needs. Each is considered the gold standard in its respective space. These solutions include Mandiant Consulting, Mandiant Managed Defense, FireEye Threat Intelligence, FireEye Expertise On Demand, and Verodin Security Validation.Now, to streamline options and simplify the process of identifying solutions our customers need to proactively combat cyber threats, we are renaming our expertise- and intelligence-backed solutions to Mandiant, under the collective term Mandiant Solutions.The renaming of our solutions does not change pricing, content, or delivery today. Current subscribers of these services will continue to receive the same unparalleled frontline expertise they have come to rely on.As we move forward, the goal of Mandiant Solutions is to deliver synergies between these solutions to help customers improve security effectiveness by automating the security operations center and augmenting their security teams with Mandiant expertise and intelligence, regardless of the SIEM and security technology they have deployed.\_Our Mandiant Solutions portfolio will include:Mandiant ConsultingMandiant Managed DefenseMandiant Threat IntelligenceMandiant Expertise On DemandMandiant Security Validation (formerly Verodin)Each of these offerings combines our technologies, intelligence and expertise, helping organizations meet evolving security challenges. Customers can be confident that Mandiant Solutions are backed by the industry’s best expertise and informed by the best threat intelligence available today.\_\_For example, following the acquisition of Verodin last year, we’ve been actively integrating our market-leading threat intelligence with the industry’s most comprehensive security validation platform, now known as Mandiant Security Validation. This represents a significant benefit to our customers who can test and validate their organization’s readiness against the very latest techniques employed by today’s threat actors.Of course, our suite of enterprise solutions (FireEye Helix, Endpoint, Network, and Email Security) also benefits from and enhances this wealth of frontline expertise through our unique Innovation Cycle. It ensures that our products and services are able to learn and adapt to new threats faster and better than anyone.\_As we look to the future, our vision is to continue to integrate these capabilities through a seamless, modern platform that accelerates our customers’ ability to measurably improve the people, processes, and technology they need to protect their critical assets.\_Stay tuned for more updates as we rollout our renaming!"
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: BAAI/bge-base-en-v1.5
SetFit with BAAI/bge-base-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-base-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-base-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
cybersec |
|
non-cybersec |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("naufalso/setfit-ctc-bge-base-en-v1.5")
# Run inference
preds = model("The salvation of the soul in plain English: the world revolves around me.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 309.552 | 20280 |
Label | Training Sample Count |
---|---|
non-cybersec | 1000 |
cybersec | 1000 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0000 | 1 | 0.2527 | - |
0.0008 | 50 | 0.2398 | - |
0.0016 | 100 | 0.2476 | - |
0.0024 | 150 | 0.2407 | - |
0.0032 | 200 | 0.2448 | - |
0.0040 | 250 | 0.241 | - |
0.0048 | 300 | 0.2381 | - |
0.0056 | 350 | 0.2345 | - |
0.0064 | 400 | 0.2344 | - |
0.0072 | 450 | 0.2284 | - |
0.0080 | 500 | 0.2232 | - |
0.0088 | 550 | 0.2167 | - |
0.0096 | 600 | 0.2082 | - |
0.0104 | 650 | 0.193 | - |
0.0112 | 700 | 0.163 | - |
0.0120 | 750 | 0.138 | - |
0.0128 | 800 | 0.1136 | - |
0.0136 | 850 | 0.0934 | - |
0.0144 | 900 | 0.0743 | - |
0.0152 | 950 | 0.0619 | - |
0.0160 | 1000 | 0.0455 | - |
0.0168 | 1050 | 0.0415 | - |
0.0176 | 1100 | 0.027 | - |
0.0184 | 1150 | 0.0276 | - |
0.0192 | 1200 | 0.0235 | - |
0.0200 | 1250 | 0.0183 | - |
0.0208 | 1300 | 0.0193 | - |
0.0216 | 1350 | 0.0161 | - |
0.0224 | 1400 | 0.0143 | - |
0.0232 | 1450 | 0.0134 | - |
0.0240 | 1500 | 0.0146 | - |
0.0248 | 1550 | 0.0152 | - |
0.0256 | 1600 | 0.0157 | - |
0.0264 | 1650 | 0.0138 | - |
0.0272 | 1700 | 0.0101 | - |
0.0280 | 1750 | 0.0089 | - |
0.0288 | 1800 | 0.0109 | - |
0.0296 | 1850 | 0.0122 | - |
0.0304 | 1900 | 0.0056 | - |
0.0312 | 1950 | 0.0094 | - |
0.0320 | 2000 | 0.0105 | - |
0.0328 | 2050 | 0.0101 | - |
0.0336 | 2100 | 0.0087 | - |
0.0344 | 2150 | 0.0089 | - |
0.0352 | 2200 | 0.0079 | - |
0.0360 | 2250 | 0.0091 | - |
0.0368 | 2300 | 0.0063 | - |
0.0376 | 2350 | 0.005 | - |
0.0384 | 2400 | 0.0083 | - |
0.0392 | 2450 | 0.0066 | - |
0.0400 | 2500 | 0.007 | - |
0.0408 | 2550 | 0.0049 | - |
0.0416 | 2600 | 0.0037 | - |
0.0424 | 2650 | 0.006 | - |
0.0432 | 2700 | 0.0063 | - |
0.0440 | 2750 | 0.0047 | - |
0.0448 | 2800 | 0.0062 | - |
0.0456 | 2850 | 0.0029 | - |
0.0464 | 2900 | 0.0038 | - |
0.0472 | 2950 | 0.0025 | - |
0.0480 | 3000 | 0.0021 | - |
0.0488 | 3050 | 0.0017 | - |
0.0496 | 3100 | 0.0041 | - |
0.0503 | 3150 | 0.0015 | - |
0.0511 | 3200 | 0.004 | - |
0.0519 | 3250 | 0.0019 | - |
0.0527 | 3300 | 0.005 | - |
0.0535 | 3350 | 0.0016 | - |
0.0543 | 3400 | 0.0037 | - |
0.0551 | 3450 | 0.0031 | - |
0.0559 | 3500 | 0.0024 | - |
0.0567 | 3550 | 0.0019 | - |
0.0575 | 3600 | 0.0036 | - |
0.0583 | 3650 | 0.0058 | - |
0.0591 | 3700 | 0.0024 | - |
0.0599 | 3750 | 0.0021 | - |
0.0607 | 3800 | 0.0015 | - |
0.0615 | 3850 | 0.0015 | - |
0.0623 | 3900 | 0.0016 | - |
0.0631 | 3950 | 0.0009 | - |
0.0639 | 4000 | 0.0014 | - |
0.0647 | 4050 | 0.0014 | - |
0.0655 | 4100 | 0.0021 | - |
0.0663 | 4150 | 0.0008 | - |
0.0671 | 4200 | 0.0031 | - |
0.0679 | 4250 | 0.0008 | - |
0.0687 | 4300 | 0.0025 | - |
0.0695 | 4350 | 0.0028 | - |
0.0703 | 4400 | 0.0025 | - |
0.0711 | 4450 | 0.0007 | - |
0.0719 | 4500 | 0.0018 | - |
0.0727 | 4550 | 0.0012 | - |
0.0735 | 4600 | 0.0012 | - |
0.0743 | 4650 | 0.0006 | - |
0.0751 | 4700 | 0.0006 | - |
0.0759 | 4750 | 0.0031 | - |
0.0767 | 4800 | 0.0017 | - |
0.0775 | 4850 | 0.0007 | - |
0.0783 | 4900 | 0.0011 | - |
0.0791 | 4950 | 0.0006 | - |
0.0799 | 5000 | 0.0006 | - |
0.0807 | 5050 | 0.0005 | - |
0.0815 | 5100 | 0.0005 | - |
0.0823 | 5150 | 0.0005 | - |
0.0831 | 5200 | 0.0005 | - |
0.0839 | 5250 | 0.0005 | - |
0.0847 | 5300 | 0.0005 | - |
0.0855 | 5350 | 0.0005 | - |
0.0863 | 5400 | 0.0005 | - |
0.0871 | 5450 | 0.0005 | - |
0.0879 | 5500 | 0.0004 | - |
0.0887 | 5550 | 0.0005 | - |
0.0895 | 5600 | 0.0004 | - |
0.0903 | 5650 | 0.0004 | - |
0.0911 | 5700 | 0.0004 | - |
0.0919 | 5750 | 0.0004 | - |
0.0927 | 5800 | 0.0004 | - |
0.0935 | 5850 | 0.0035 | - |
0.0943 | 5900 | 0.0112 | - |
0.0951 | 5950 | 0.0054 | - |
0.0959 | 6000 | 0.0058 | - |
0.0967 | 6050 | 0.0027 | - |
0.0975 | 6100 | 0.0051 | - |
0.0983 | 6150 | 0.0038 | - |
0.0991 | 6200 | 0.0031 | - |
0.0999 | 6250 | 0.0038 | - |
0.1007 | 6300 | 0.0021 | - |
0.1015 | 6350 | 0.0029 | - |
0.1023 | 6400 | 0.0018 | - |
0.1031 | 6450 | 0.0035 | - |
0.1039 | 6500 | 0.0017 | - |
0.1047 | 6550 | 0.0026 | - |
0.1055 | 6600 | 0.0016 | - |
0.1063 | 6650 | 0.0016 | - |
0.1071 | 6700 | 0.0004 | - |
0.1079 | 6750 | 0.001 | - |
0.1087 | 6800 | 0.0028 | - |
0.1095 | 6850 | 0.001 | - |
0.1103 | 6900 | 0.0003 | - |
0.1111 | 6950 | 0.001 | - |
0.1119 | 7000 | 0.0016 | - |
0.1127 | 7050 | 0.0003 | - |
0.1135 | 7100 | 0.0022 | - |
0.1143 | 7150 | 0.0022 | - |
0.1151 | 7200 | 0.0016 | - |
0.1159 | 7250 | 0.0007 | - |
0.1167 | 7300 | 0.0003 | - |
0.1175 | 7350 | 0.0006 | - |
0.1183 | 7400 | 0.0026 | - |
0.1191 | 7450 | 0.0004 | - |
0.1199 | 7500 | 0.0008 | - |
0.1207 | 7550 | 0.0004 | - |
0.1215 | 7600 | 0.0003 | - |
0.1223 | 7650 | 0.0004 | - |
0.1231 | 7700 | 0.0023 | - |
0.1239 | 7750 | 0.0004 | - |
0.1247 | 7800 | 0.0005 | - |
0.1255 | 7850 | 0.0005 | - |
0.1263 | 7900 | 0.0016 | - |
0.1271 | 7950 | 0.0005 | - |
0.1279 | 8000 | 0.0004 | - |
0.1287 | 8050 | 0.0003 | - |
0.1295 | 8100 | 0.0014 | - |
0.1303 | 8150 | 0.0052 | - |
0.1311 | 8200 | 0.005 | - |
0.1319 | 8250 | 0.0051 | - |
0.1327 | 8300 | 0.0009 | - |
0.1335 | 8350 | 0.0003 | - |
0.1343 | 8400 | 0.0004 | - |
0.1351 | 8450 | 0.0003 | - |
0.1359 | 8500 | 0.0003 | - |
0.1367 | 8550 | 0.0009 | - |
0.1375 | 8600 | 0.0003 | - |
0.1383 | 8650 | 0.0003 | - |
0.1391 | 8700 | 0.0003 | - |
0.1399 | 8750 | 0.0009 | - |
0.1407 | 8800 | 0.0012 | - |
0.1415 | 8850 | 0.0009 | - |
0.1423 | 8900 | 0.0003 | - |
0.1431 | 8950 | 0.0002 | - |
0.1439 | 9000 | 0.0002 | - |
0.1447 | 9050 | 0.0002 | - |
0.1455 | 9100 | 0.0002 | - |
0.1463 | 9150 | 0.0002 | - |
0.1471 | 9200 | 0.0002 | - |
0.1479 | 9250 | 0.0003 | - |
0.1487 | 9300 | 0.0002 | - |
0.1494 | 9350 | 0.0002 | - |
0.1502 | 9400 | 0.0002 | - |
0.1510 | 9450 | 0.0002 | - |
0.1518 | 9500 | 0.0002 | - |
0.1526 | 9550 | 0.0002 | - |
0.1534 | 9600 | 0.0002 | - |
0.1542 | 9650 | 0.0002 | - |
0.1550 | 9700 | 0.0002 | - |
0.1558 | 9750 | 0.0002 | - |
0.1566 | 9800 | 0.0002 | - |
0.1574 | 9850 | 0.0002 | - |
0.1582 | 9900 | 0.0002 | - |
0.1590 | 9950 | 0.0002 | - |
0.1598 | 10000 | 0.0002 | - |
0.1606 | 10050 | 0.0002 | - |
0.1614 | 10100 | 0.0002 | - |
0.1622 | 10150 | 0.0002 | - |
0.1630 | 10200 | 0.0002 | - |
0.1638 | 10250 | 0.0002 | - |
0.1646 | 10300 | 0.0002 | - |
0.1654 | 10350 | 0.0002 | - |
0.1662 | 10400 | 0.0002 | - |
0.1670 | 10450 | 0.0002 | - |
0.1678 | 10500 | 0.0002 | - |
0.1686 | 10550 | 0.0002 | - |
0.1694 | 10600 | 0.0002 | - |
0.1702 | 10650 | 0.0002 | - |
0.1710 | 10700 | 0.0002 | - |
0.1718 | 10750 | 0.0002 | - |
0.1726 | 10800 | 0.0002 | - |
0.1734 | 10850 | 0.0002 | - |
0.1742 | 10900 | 0.0002 | - |
0.1750 | 10950 | 0.0002 | - |
0.1758 | 11000 | 0.0002 | - |
0.1766 | 11050 | 0.0002 | - |
0.1774 | 11100 | 0.0002 | - |
0.1782 | 11150 | 0.0002 | - |
0.1790 | 11200 | 0.0002 | - |
0.1798 | 11250 | 0.0002 | - |
0.1806 | 11300 | 0.0002 | - |
0.1814 | 11350 | 0.0002 | - |
0.1822 | 11400 | 0.0002 | - |
0.1830 | 11450 | 0.0002 | - |
0.1838 | 11500 | 0.0002 | - |
0.1846 | 11550 | 0.0002 | - |
0.1854 | 11600 | 0.0002 | - |
0.1862 | 11650 | 0.0002 | - |
0.1870 | 11700 | 0.0002 | - |
0.1878 | 11750 | 0.0002 | - |
0.1886 | 11800 | 0.0001 | - |
0.1894 | 11850 | 0.0002 | - |
0.1902 | 11900 | 0.0002 | - |
0.1910 | 11950 | 0.0001 | - |
0.1918 | 12000 | 0.0001 | - |
0.1926 | 12050 | 0.0001 | - |
0.1934 | 12100 | 0.0001 | - |
0.1942 | 12150 | 0.0001 | - |
0.1950 | 12200 | 0.0001 | - |
0.1958 | 12250 | 0.0001 | - |
0.1966 | 12300 | 0.0001 | - |
0.1974 | 12350 | 0.0001 | - |
0.1982 | 12400 | 0.0001 | - |
0.1990 | 12450 | 0.0001 | - |
0.1998 | 12500 | 0.0001 | - |
0.2006 | 12550 | 0.0001 | - |
0.2014 | 12600 | 0.0001 | - |
0.2022 | 12650 | 0.0001 | - |
0.2030 | 12700 | 0.0001 | - |
0.2038 | 12750 | 0.0001 | - |
0.2046 | 12800 | 0.0001 | - |
0.2054 | 12850 | 0.0001 | - |
0.2062 | 12900 | 0.0001 | - |
0.2070 | 12950 | 0.0001 | - |
0.2078 | 13000 | 0.0001 | - |
0.2086 | 13050 | 0.0001 | - |
0.2094 | 13100 | 0.0001 | - |
0.2102 | 13150 | 0.0001 | - |
0.2110 | 13200 | 0.0001 | - |
0.2118 | 13250 | 0.0001 | - |
0.2126 | 13300 | 0.0001 | - |
0.2134 | 13350 | 0.0001 | - |
0.2142 | 13400 | 0.0001 | - |
0.2150 | 13450 | 0.0001 | - |
0.2158 | 13500 | 0.0001 | - |
0.2166 | 13550 | 0.0001 | - |
0.2174 | 13600 | 0.0001 | - |
0.2182 | 13650 | 0.0001 | - |
0.2190 | 13700 | 0.0001 | - |
0.2198 | 13750 | 0.0001 | - |
0.2206 | 13800 | 0.0001 | - |
0.2214 | 13850 | 0.0001 | - |
0.2222 | 13900 | 0.0001 | - |
0.2230 | 13950 | 0.0001 | - |
0.2238 | 14000 | 0.0001 | - |
0.2246 | 14050 | 0.0001 | - |
0.2254 | 14100 | 0.0001 | - |
0.2262 | 14150 | 0.0001 | - |
0.2270 | 14200 | 0.0001 | - |
0.2278 | 14250 | 0.0001 | - |
0.2286 | 14300 | 0.0001 | - |
0.2294 | 14350 | 0.0001 | - |
0.2302 | 14400 | 0.0001 | - |
0.2310 | 14450 | 0.0001 | - |
0.2318 | 14500 | 0.0001 | - |
0.2326 | 14550 | 0.0001 | - |
0.2334 | 14600 | 0.0001 | - |
0.2342 | 14650 | 0.0001 | - |
0.2350 | 14700 | 0.0001 | - |
0.2358 | 14750 | 0.0001 | - |
0.2366 | 14800 | 0.0001 | - |
0.2374 | 14850 | 0.0001 | - |
0.2382 | 14900 | 0.0001 | - |
0.2390 | 14950 | 0.0001 | - |
0.2398 | 15000 | 0.0001 | - |
0.2406 | 15050 | 0.0001 | - |
0.2414 | 15100 | 0.0001 | - |
0.2422 | 15150 | 0.0001 | - |
0.2430 | 15200 | 0.0001 | - |
0.2438 | 15250 | 0.0001 | - |
0.2446 | 15300 | 0.0001 | - |
0.2454 | 15350 | 0.0001 | - |
0.2462 | 15400 | 0.0001 | - |
0.2470 | 15450 | 0.0001 | - |
0.2478 | 15500 | 0.0001 | - |
0.2485 | 15550 | 0.0001 | - |
0.2493 | 15600 | 0.0001 | - |
0.2501 | 15650 | 0.0001 | - |
0.2509 | 15700 | 0.0001 | - |
0.2517 | 15750 | 0.0001 | - |
0.2525 | 15800 | 0.0001 | - |
0.2533 | 15850 | 0.0001 | - |
0.2541 | 15900 | 0.0001 | - |
0.2549 | 15950 | 0.0001 | - |
0.2557 | 16000 | 0.0001 | - |
0.2565 | 16050 | 0.0001 | - |
0.2573 | 16100 | 0.0001 | - |
0.2581 | 16150 | 0.0001 | - |
0.2589 | 16200 | 0.0001 | - |
0.2597 | 16250 | 0.0001 | - |
0.2605 | 16300 | 0.0001 | - |
0.2613 | 16350 | 0.0001 | - |
0.2621 | 16400 | 0.0001 | - |
0.2629 | 16450 | 0.0011 | - |
0.2637 | 16500 | 0.0011 | - |
0.2645 | 16550 | 0.0022 | - |
0.2653 | 16600 | 0.0055 | - |
0.2661 | 16650 | 0.0012 | - |
0.2669 | 16700 | 0.0023 | - |
0.2677 | 16750 | 0.0016 | - |
0.2685 | 16800 | 0.0001 | - |
0.2693 | 16850 | 0.0001 | - |
0.2701 | 16900 | 0.0001 | - |
0.2709 | 16950 | 0.0001 | - |
0.2717 | 17000 | 0.0001 | - |
0.2725 | 17050 | 0.0001 | - |
0.2733 | 17100 | 0.0001 | - |
0.2741 | 17150 | 0.0001 | - |
0.2749 | 17200 | 0.0001 | - |
0.2757 | 17250 | 0.0001 | - |
0.2765 | 17300 | 0.0001 | - |
0.2773 | 17350 | 0.0001 | - |
0.2781 | 17400 | 0.0001 | - |
0.2789 | 17450 | 0.0001 | - |
0.2797 | 17500 | 0.0001 | - |
0.2805 | 17550 | 0.0001 | - |
0.2813 | 17600 | 0.0001 | - |
0.2821 | 17650 | 0.0001 | - |
0.2829 | 17700 | 0.0001 | - |
0.2837 | 17750 | 0.0001 | - |
0.2845 | 17800 | 0.0003 | - |
0.2853 | 17850 | 0.0001 | - |
0.2861 | 17900 | 0.0001 | - |
0.2869 | 17950 | 0.0001 | - |
0.2877 | 18000 | 0.0001 | - |
0.2885 | 18050 | 0.0001 | - |
0.2893 | 18100 | 0.0001 | - |
0.2901 | 18150 | 0.0001 | - |
0.2909 | 18200 | 0.0001 | - |
0.2917 | 18250 | 0.0001 | - |
0.2925 | 18300 | 0.0001 | - |
0.2933 | 18350 | 0.0001 | - |
0.2941 | 18400 | 0.0001 | - |
0.2949 | 18450 | 0.0001 | - |
0.2957 | 18500 | 0.0001 | - |
0.2965 | 18550 | 0.0001 | - |
0.2973 | 18600 | 0.0001 | - |
0.2981 | 18650 | 0.0001 | - |
0.2989 | 18700 | 0.0001 | - |
0.2997 | 18750 | 0.0001 | - |
0.3005 | 18800 | 0.0001 | - |
0.3013 | 18850 | 0.0001 | - |
0.3021 | 18900 | 0.0001 | - |
0.3029 | 18950 | 0.0001 | - |
0.3037 | 19000 | 0.0001 | - |
0.3045 | 19050 | 0.0001 | - |
0.3053 | 19100 | 0.0001 | - |
0.3061 | 19150 | 0.0001 | - |
0.3069 | 19200 | 0.0001 | - |
0.3077 | 19250 | 0.0001 | - |
0.3085 | 19300 | 0.0001 | - |
0.3093 | 19350 | 0.0001 | - |
0.3101 | 19400 | 0.0001 | - |
0.3109 | 19450 | 0.0001 | - |
0.3117 | 19500 | 0.0001 | - |
0.3125 | 19550 | 0.0001 | - |
0.3133 | 19600 | 0.0001 | - |
0.3141 | 19650 | 0.0001 | - |
0.3149 | 19700 | 0.0001 | - |
0.3157 | 19750 | 0.0001 | - |
0.3165 | 19800 | 0.0 | - |
0.3173 | 19850 | 0.0001 | - |
0.3181 | 19900 | 0.0001 | - |
0.3189 | 19950 | 0.0001 | - |
0.3197 | 20000 | 0.0001 | - |
0.3205 | 20050 | 0.0001 | - |
0.3213 | 20100 | 0.0001 | - |
0.3221 | 20150 | 0.0001 | - |
0.3229 | 20200 | 0.0 | - |
0.3237 | 20250 | 0.0001 | - |
0.3245 | 20300 | 0.0 | - |
0.3253 | 20350 | 0.0001 | - |
0.3261 | 20400 | 0.0 | - |
0.3269 | 20450 | 0.0 | - |
0.3277 | 20500 | 0.0 | - |
0.3285 | 20550 | 0.0001 | - |
0.3293 | 20600 | 0.0 | - |
0.3301 | 20650 | 0.0 | - |
0.3309 | 20700 | 0.0 | - |
0.3317 | 20750 | 0.0 | - |
0.3325 | 20800 | 0.0 | - |
0.3333 | 20850 | 0.0 | - |
0.3341 | 20900 | 0.0 | - |
0.3349 | 20950 | 0.0 | - |
0.3357 | 21000 | 0.0 | - |
0.3365 | 21050 | 0.0 | - |
0.3373 | 21100 | 0.0 | - |
0.3381 | 21150 | 0.0 | - |
0.3389 | 21200 | 0.0 | - |
0.3397 | 21250 | 0.0 | - |
0.3405 | 21300 | 0.0 | - |
0.3413 | 21350 | 0.0 | - |
0.3421 | 21400 | 0.0 | - |
0.3429 | 21450 | 0.0 | - |
0.3437 | 21500 | 0.0 | - |
0.3445 | 21550 | 0.0 | - |
0.3453 | 21600 | 0.0 | - |
0.3461 | 21650 | 0.0 | - |
0.3469 | 21700 | 0.0 | - |
0.3476 | 21750 | 0.0 | - |
0.3484 | 21800 | 0.0 | - |
0.3492 | 21850 | 0.0 | - |
0.3500 | 21900 | 0.0 | - |
0.3508 | 21950 | 0.0 | - |
0.3516 | 22000 | 0.0 | - |
0.3524 | 22050 | 0.0 | - |
0.3532 | 22100 | 0.0 | - |
0.3540 | 22150 | 0.0 | - |
0.3548 | 22200 | 0.0 | - |
0.3556 | 22250 | 0.0 | - |
0.3564 | 22300 | 0.0 | - |
0.3572 | 22350 | 0.0 | - |
0.3580 | 22400 | 0.0 | - |
0.3588 | 22450 | 0.0 | - |
0.3596 | 22500 | 0.0 | - |
0.3604 | 22550 | 0.0 | - |
0.3612 | 22600 | 0.0 | - |
0.3620 | 22650 | 0.0 | - |
0.3628 | 22700 | 0.0 | - |
0.3636 | 22750 | 0.0 | - |
0.3644 | 22800 | 0.0 | - |
0.3652 | 22850 | 0.0 | - |
0.3660 | 22900 | 0.0 | - |
0.3668 | 22950 | 0.0 | - |
0.3676 | 23000 | 0.0 | - |
0.3684 | 23050 | 0.0 | - |
0.3692 | 23100 | 0.0 | - |
0.3700 | 23150 | 0.0 | - |
0.3708 | 23200 | 0.0 | - |
0.3716 | 23250 | 0.0 | - |
0.3724 | 23300 | 0.0 | - |
0.3732 | 23350 | 0.0 | - |
0.3740 | 23400 | 0.0 | - |
0.3748 | 23450 | 0.0 | - |
0.3756 | 23500 | 0.0 | - |
0.3764 | 23550 | 0.0 | - |
0.3772 | 23600 | 0.0 | - |
0.3780 | 23650 | 0.0 | - |
0.3788 | 23700 | 0.0 | - |
0.3796 | 23750 | 0.0 | - |
0.3804 | 23800 | 0.0 | - |
0.3812 | 23850 | 0.0 | - |
0.3820 | 23900 | 0.0 | - |
0.3828 | 23950 | 0.0 | - |
0.3836 | 24000 | 0.0 | - |
0.3844 | 24050 | 0.0 | - |
0.3852 | 24100 | 0.0 | - |
0.3860 | 24150 | 0.0 | - |
0.3868 | 24200 | 0.0 | - |
0.3876 | 24250 | 0.0 | - |
0.3884 | 24300 | 0.0 | - |
0.3892 | 24350 | 0.0 | - |
0.3900 | 24400 | 0.0 | - |
0.3908 | 24450 | 0.0 | - |
0.3916 | 24500 | 0.0 | - |
0.3924 | 24550 | 0.0 | - |
0.3932 | 24600 | 0.0 | - |
0.3940 | 24650 | 0.0 | - |
0.3948 | 24700 | 0.0 | - |
0.3956 | 24750 | 0.0 | - |
0.3964 | 24800 | 0.0 | - |
0.3972 | 24850 | 0.0 | - |
0.3980 | 24900 | 0.0 | - |
0.3988 | 24950 | 0.0 | - |
0.3996 | 25000 | 0.0 | - |
0.4004 | 25050 | 0.0 | - |
0.4012 | 25100 | 0.0 | - |
0.4020 | 25150 | 0.0 | - |
0.4028 | 25200 | 0.0 | - |
0.4036 | 25250 | 0.0 | - |
0.4044 | 25300 | 0.0 | - |
0.4052 | 25350 | 0.0 | - |
0.4060 | 25400 | 0.0 | - |
0.4068 | 25450 | 0.0 | - |
0.4076 | 25500 | 0.0 | - |
0.4084 | 25550 | 0.0 | - |
0.4092 | 25600 | 0.0 | - |
0.4100 | 25650 | 0.0 | - |
0.4108 | 25700 | 0.0 | - |
0.4116 | 25750 | 0.0 | - |
0.4124 | 25800 | 0.0 | - |
0.4132 | 25850 | 0.0 | - |
0.4140 | 25900 | 0.0 | - |
0.4148 | 25950 | 0.0 | - |
0.4156 | 26000 | 0.0 | - |
0.4164 | 26050 | 0.0 | - |
0.4172 | 26100 | 0.0 | - |
0.4180 | 26150 | 0.0 | - |
0.4188 | 26200 | 0.0 | - |
0.4196 | 26250 | 0.0 | - |
0.4204 | 26300 | 0.0 | - |
0.4212 | 26350 | 0.0 | - |
0.4220 | 26400 | 0.0 | - |
0.4228 | 26450 | 0.0 | - |
0.4236 | 26500 | 0.0 | - |
0.4244 | 26550 | 0.0 | - |
0.4252 | 26600 | 0.0 | - |
0.4260 | 26650 | 0.0 | - |
0.4268 | 26700 | 0.0 | - |
0.4276 | 26750 | 0.0 | - |
0.4284 | 26800 | 0.0 | - |
0.4292 | 26850 | 0.0 | - |
0.4300 | 26900 | 0.0 | - |
0.4308 | 26950 | 0.0 | - |
0.4316 | 27000 | 0.0 | - |
0.4324 | 27050 | 0.0 | - |
0.4332 | 27100 | 0.0 | - |
0.4340 | 27150 | 0.0 | - |
0.4348 | 27200 | 0.0 | - |
0.4356 | 27250 | 0.0 | - |
0.4364 | 27300 | 0.0 | - |
0.4372 | 27350 | 0.0 | - |
0.4380 | 27400 | 0.0 | - |
0.4388 | 27450 | 0.0 | - |
0.4396 | 27500 | 0.0 | - |
0.4404 | 27550 | 0.0 | - |
0.4412 | 27600 | 0.0 | - |
0.4420 | 27650 | 0.0 | - |
0.4428 | 27700 | 0.0 | - |
0.4436 | 27750 | 0.0 | - |
0.4444 | 27800 | 0.0 | - |
0.4452 | 27850 | 0.0 | - |
0.4460 | 27900 | 0.0 | - |
0.4467 | 27950 | 0.0 | - |
0.4475 | 28000 | 0.0 | - |
0.4483 | 28050 | 0.0 | - |
0.4491 | 28100 | 0.0 | - |
0.4499 | 28150 | 0.0 | - |
0.4507 | 28200 | 0.0 | - |
0.4515 | 28250 | 0.0 | - |
0.4523 | 28300 | 0.0 | - |
0.4531 | 28350 | 0.0 | - |
0.4539 | 28400 | 0.0 | - |
0.4547 | 28450 | 0.0 | - |
0.4555 | 28500 | 0.0 | - |
0.4563 | 28550 | 0.0 | - |
0.4571 | 28600 | 0.0 | - |
0.4579 | 28650 | 0.0 | - |
0.4587 | 28700 | 0.0 | - |
0.4595 | 28750 | 0.0 | - |
0.4603 | 28800 | 0.0 | - |
0.4611 | 28850 | 0.0 | - |
0.4619 | 28900 | 0.0 | - |
0.4627 | 28950 | 0.0 | - |
0.4635 | 29000 | 0.0 | - |
0.4643 | 29050 | 0.0 | - |
0.4651 | 29100 | 0.0 | - |
0.4659 | 29150 | 0.0 | - |
0.4667 | 29200 | 0.0 | - |
0.4675 | 29250 | 0.0 | - |
0.4683 | 29300 | 0.0 | - |
0.4691 | 29350 | 0.0003 | - |
0.4699 | 29400 | 0.0 | - |
0.4707 | 29450 | 0.0005 | - |
0.4715 | 29500 | 0.0 | - |
0.4723 | 29550 | 0.0 | - |
0.4731 | 29600 | 0.0 | - |
0.4739 | 29650 | 0.0001 | - |
0.4747 | 29700 | 0.0 | - |
0.4755 | 29750 | 0.0 | - |
0.4763 | 29800 | 0.0 | - |
0.4771 | 29850 | 0.0 | - |
0.4779 | 29900 | 0.0 | - |
0.4787 | 29950 | 0.0 | - |
0.4795 | 30000 | 0.0 | - |
0.4803 | 30050 | 0.0 | - |
0.4811 | 30100 | 0.0 | - |
0.4819 | 30150 | 0.0 | - |
0.4827 | 30200 | 0.0 | - |
0.4835 | 30250 | 0.0 | - |
0.4843 | 30300 | 0.0 | - |
0.4851 | 30350 | 0.0 | - |
0.4859 | 30400 | 0.0 | - |
0.4867 | 30450 | 0.0 | - |
0.4875 | 30500 | 0.0 | - |
0.4883 | 30550 | 0.0 | - |
0.4891 | 30600 | 0.0 | - |
0.4899 | 30650 | 0.0 | - |
0.4907 | 30700 | 0.0 | - |
0.4915 | 30750 | 0.0 | - |
0.4923 | 30800 | 0.0 | - |
0.4931 | 30850 | 0.0 | - |
0.4939 | 30900 | 0.0 | - |
0.4947 | 30950 | 0.0 | - |
0.4955 | 31000 | 0.0 | - |
0.4963 | 31050 | 0.0 | - |
0.4971 | 31100 | 0.0 | - |
0.4979 | 31150 | 0.0 | - |
0.4987 | 31200 | 0.0 | - |
0.4995 | 31250 | 0.0 | - |
0.5003 | 31300 | 0.0 | - |
0.5011 | 31350 | 0.0 | - |
0.5019 | 31400 | 0.0 | - |
0.5027 | 31450 | 0.0 | - |
0.5035 | 31500 | 0.0 | - |
0.5043 | 31550 | 0.0043 | - |
0.5051 | 31600 | 0.0008 | - |
0.5059 | 31650 | 0.0 | - |
0.5067 | 31700 | 0.0 | - |
0.5075 | 31750 | 0.0 | - |
0.5083 | 31800 | 0.0 | - |
0.5091 | 31850 | 0.0 | - |
0.5099 | 31900 | 0.0 | - |
0.5107 | 31950 | 0.0 | - |
0.5115 | 32000 | 0.0 | - |
0.5123 | 32050 | 0.0 | - |
0.5131 | 32100 | 0.0 | - |
0.5139 | 32150 | 0.0 | - |
0.5147 | 32200 | 0.0 | - |
0.5155 | 32250 | 0.0 | - |
0.5163 | 32300 | 0.0 | - |
0.5171 | 32350 | 0.0 | - |
0.5179 | 32400 | 0.0 | - |
0.5187 | 32450 | 0.0 | - |
0.5195 | 32500 | 0.0 | - |
0.5203 | 32550 | 0.0 | - |
0.5211 | 32600 | 0.0 | - |
0.5219 | 32650 | 0.0 | - |
0.5227 | 32700 | 0.0 | - |
0.5235 | 32750 | 0.0 | - |
0.5243 | 32800 | 0.0 | - |
0.5251 | 32850 | 0.0 | - |
0.5259 | 32900 | 0.0 | - |
0.5267 | 32950 | 0.0 | - |
0.5275 | 33000 | 0.0 | - |
0.5283 | 33050 | 0.0 | - |
0.5291 | 33100 | 0.0 | - |
0.5299 | 33150 | 0.0 | - |
0.5307 | 33200 | 0.0 | - |
0.5315 | 33250 | 0.0 | - |
0.5323 | 33300 | 0.0 | - |
0.5331 | 33350 | 0.0 | - |
0.5339 | 33400 | 0.0 | - |
0.5347 | 33450 | 0.0 | - |
0.5355 | 33500 | 0.0 | - |
0.5363 | 33550 | 0.0 | - |
0.5371 | 33600 | 0.0 | - |
0.5379 | 33650 | 0.0 | - |
0.5387 | 33700 | 0.0 | - |
0.5395 | 33750 | 0.0 | - |
0.5403 | 33800 | 0.0 | - |
0.5411 | 33850 | 0.0 | - |
0.5419 | 33900 | 0.0 | - |
0.5427 | 33950 | 0.0 | - |
0.5435 | 34000 | 0.0 | - |
0.5443 | 34050 | 0.0 | - |
0.5451 | 34100 | 0.0 | - |
0.5458 | 34150 | 0.0 | - |
0.5466 | 34200 | 0.0 | - |
0.5474 | 34250 | 0.0 | - |
0.5482 | 34300 | 0.0 | - |
0.5490 | 34350 | 0.0 | - |
0.5498 | 34400 | 0.0 | - |
0.5506 | 34450 | 0.0 | - |
0.5514 | 34500 | 0.0 | - |
0.5522 | 34550 | 0.0 | - |
0.5530 | 34600 | 0.0 | - |
0.5538 | 34650 | 0.0 | - |
0.5546 | 34700 | 0.0 | - |
0.5554 | 34750 | 0.0 | - |
0.5562 | 34800 | 0.0 | - |
0.5570 | 34850 | 0.0 | - |
0.5578 | 34900 | 0.0 | - |
0.5586 | 34950 | 0.0 | - |
0.5594 | 35000 | 0.0 | - |
0.5602 | 35050 | 0.0 | - |
0.5610 | 35100 | 0.0 | - |
0.5618 | 35150 | 0.0 | - |
0.5626 | 35200 | 0.0 | - |
0.5634 | 35250 | 0.0 | - |
0.5642 | 35300 | 0.0 | - |
0.5650 | 35350 | 0.0 | - |
0.5658 | 35400 | 0.0 | - |
0.5666 | 35450 | 0.0 | - |
0.5674 | 35500 | 0.0 | - |
0.5682 | 35550 | 0.0 | - |
0.5690 | 35600 | 0.0 | - |
0.5698 | 35650 | 0.0 | - |
0.5706 | 35700 | 0.0 | - |
0.5714 | 35750 | 0.0 | - |
0.5722 | 35800 | 0.0 | - |
0.5730 | 35850 | 0.0 | - |
0.5738 | 35900 | 0.0 | - |
0.5746 | 35950 | 0.0 | - |
0.5754 | 36000 | 0.0 | - |
0.5762 | 36050 | 0.0 | - |
0.5770 | 36100 | 0.0 | - |
0.5778 | 36150 | 0.0 | - |
0.5786 | 36200 | 0.0 | - |
0.5794 | 36250 | 0.0 | - |
0.5802 | 36300 | 0.0 | - |
0.5810 | 36350 | 0.0 | - |
0.5818 | 36400 | 0.0 | - |
0.5826 | 36450 | 0.0 | - |
0.5834 | 36500 | 0.0 | - |
0.5842 | 36550 | 0.0 | - |
0.5850 | 36600 | 0.0 | - |
0.5858 | 36650 | 0.0 | - |
0.5866 | 36700 | 0.0 | - |
0.5874 | 36750 | 0.0 | - |
0.5882 | 36800 | 0.0 | - |
0.5890 | 36850 | 0.0 | - |
0.5898 | 36900 | 0.0 | - |
0.5906 | 36950 | 0.0 | - |
0.5914 | 37000 | 0.0 | - |
0.5922 | 37050 | 0.0 | - |
0.5930 | 37100 | 0.0 | - |
0.5938 | 37150 | 0.0 | - |
0.5946 | 37200 | 0.0 | - |
0.5954 | 37250 | 0.0 | - |
0.5962 | 37300 | 0.0 | - |
0.5970 | 37350 | 0.0 | - |
0.5978 | 37400 | 0.0 | - |
0.5986 | 37450 | 0.0 | - |
0.5994 | 37500 | 0.0 | - |
0.6002 | 37550 | 0.0 | - |
0.6010 | 37600 | 0.0 | - |
0.6018 | 37650 | 0.0 | - |
0.6026 | 37700 | 0.0 | - |
0.6034 | 37750 | 0.0 | - |
0.6042 | 37800 | 0.0 | - |
0.6050 | 37850 | 0.0 | - |
0.6058 | 37900 | 0.0 | - |
0.6066 | 37950 | 0.0 | - |
0.6074 | 38000 | 0.0 | - |
0.6082 | 38050 | 0.0 | - |
0.6090 | 38100 | 0.0 | - |
0.6098 | 38150 | 0.0 | - |
0.6106 | 38200 | 0.0 | - |
0.6114 | 38250 | 0.0 | - |
0.6122 | 38300 | 0.0 | - |
0.6130 | 38350 | 0.0 | - |
0.6138 | 38400 | 0.0 | - |
0.6146 | 38450 | 0.0 | - |
0.6154 | 38500 | 0.0 | - |
0.6162 | 38550 | 0.0 | - |
0.6170 | 38600 | 0.0 | - |
0.6178 | 38650 | 0.0 | - |
0.6186 | 38700 | 0.0 | - |
0.6194 | 38750 | 0.0 | - |
0.6202 | 38800 | 0.0 | - |
0.6210 | 38850 | 0.0 | - |
0.6218 | 38900 | 0.0 | - |
0.6226 | 38950 | 0.0 | - |
0.6234 | 39000 | 0.0 | - |
0.6242 | 39050 | 0.0 | - |
0.6250 | 39100 | 0.0 | - |
0.6258 | 39150 | 0.0 | - |
0.6266 | 39200 | 0.0 | - |
0.6274 | 39250 | 0.0006 | - |
0.6282 | 39300 | 0.0 | - |
0.6290 | 39350 | 0.0022 | - |
0.6298 | 39400 | 0.0 | - |
0.6306 | 39450 | 0.0 | - |
0.6314 | 39500 | 0.0 | - |
0.6322 | 39550 | 0.0 | - |
0.6330 | 39600 | 0.0 | - |
0.6338 | 39650 | 0.0 | - |
0.6346 | 39700 | 0.0 | - |
0.6354 | 39750 | 0.0 | - |
0.6362 | 39800 | 0.0 | - |
0.6370 | 39850 | 0.0 | - |
0.6378 | 39900 | 0.0 | - |
0.6386 | 39950 | 0.0 | - |
0.6394 | 40000 | 0.0 | - |
0.6402 | 40050 | 0.0 | - |
0.6410 | 40100 | 0.0 | - |
0.6418 | 40150 | 0.0 | - |
0.6426 | 40200 | 0.0 | - |
0.6434 | 40250 | 0.0 | - |
0.6442 | 40300 | 0.0 | - |
0.6449 | 40350 | 0.0 | - |
0.6457 | 40400 | 0.0 | - |
0.6465 | 40450 | 0.0 | - |
0.6473 | 40500 | 0.0 | - |
0.6481 | 40550 | 0.0 | - |
0.6489 | 40600 | 0.0 | - |
0.6497 | 40650 | 0.0 | - |
0.6505 | 40700 | 0.0 | - |
0.6513 | 40750 | 0.0 | - |
0.6521 | 40800 | 0.0 | - |
0.6529 | 40850 | 0.0 | - |
0.6537 | 40900 | 0.0 | - |
0.6545 | 40950 | 0.0 | - |
0.6553 | 41000 | 0.0 | - |
0.6561 | 41050 | 0.0 | - |
0.6569 | 41100 | 0.0 | - |
0.6577 | 41150 | 0.0 | - |
0.6585 | 41200 | 0.0 | - |
0.6593 | 41250 | 0.0 | - |
0.6601 | 41300 | 0.0 | - |
0.6609 | 41350 | 0.0 | - |
0.6617 | 41400 | 0.0 | - |
0.6625 | 41450 | 0.0 | - |
0.6633 | 41500 | 0.0 | - |
0.6641 | 41550 | 0.0 | - |
0.6649 | 41600 | 0.0 | - |
0.6657 | 41650 | 0.0 | - |
0.6665 | 41700 | 0.0 | - |
0.6673 | 41750 | 0.0 | - |
0.6681 | 41800 | 0.0 | - |
0.6689 | 41850 | 0.0 | - |
0.6697 | 41900 | 0.0 | - |
0.6705 | 41950 | 0.0 | - |
0.6713 | 42000 | 0.0 | - |
0.6721 | 42050 | 0.0 | - |
0.6729 | 42100 | 0.0 | - |
0.6737 | 42150 | 0.0 | - |
0.6745 | 42200 | 0.0 | - |
0.6753 | 42250 | 0.0 | - |
0.6761 | 42300 | 0.0 | - |
0.6769 | 42350 | 0.0 | - |
0.6777 | 42400 | 0.0 | - |
0.6785 | 42450 | 0.0 | - |
0.6793 | 42500 | 0.0 | - |
0.6801 | 42550 | 0.0 | - |
0.6809 | 42600 | 0.0 | - |
0.6817 | 42650 | 0.0 | - |
0.6825 | 42700 | 0.0 | - |
0.6833 | 42750 | 0.0 | - |
0.6841 | 42800 | 0.0 | - |
0.6849 | 42850 | 0.0 | - |
0.6857 | 42900 | 0.0 | - |
0.6865 | 42950 | 0.0 | - |
0.6873 | 43000 | 0.0 | - |
0.6881 | 43050 | 0.0 | - |
0.6889 | 43100 | 0.0 | - |
0.6897 | 43150 | 0.0 | - |
0.6905 | 43200 | 0.0 | - |
0.6913 | 43250 | 0.0 | - |
0.6921 | 43300 | 0.0 | - |
0.6929 | 43350 | 0.0 | - |
0.6937 | 43400 | 0.0 | - |
0.6945 | 43450 | 0.0 | - |
0.6953 | 43500 | 0.0 | - |
0.6961 | 43550 | 0.0 | - |
0.6969 | 43600 | 0.0 | - |
0.6977 | 43650 | 0.0 | - |
0.6985 | 43700 | 0.0 | - |
0.6993 | 43750 | 0.0 | - |
0.7001 | 43800 | 0.0 | - |
0.7009 | 43850 | 0.0 | - |
0.7017 | 43900 | 0.0 | - |
0.7025 | 43950 | 0.0 | - |
0.7033 | 44000 | 0.0 | - |
0.7041 | 44050 | 0.0 | - |
0.7049 | 44100 | 0.0 | - |
0.7057 | 44150 | 0.0 | - |
0.7065 | 44200 | 0.0 | - |
0.7073 | 44250 | 0.0 | - |
0.7081 | 44300 | 0.0 | - |
0.7089 | 44350 | 0.0 | - |
0.7097 | 44400 | 0.0 | - |
0.7105 | 44450 | 0.0 | - |
0.7113 | 44500 | 0.0 | - |
0.7121 | 44550 | 0.0 | - |
0.7129 | 44600 | 0.0 | - |
0.7137 | 44650 | 0.0 | - |
0.7145 | 44700 | 0.0 | - |
0.7153 | 44750 | 0.0 | - |
0.7161 | 44800 | 0.0 | - |
0.7169 | 44850 | 0.0 | - |
0.7177 | 44900 | 0.0 | - |
0.7185 | 44950 | 0.0 | - |
0.7193 | 45000 | 0.0 | - |
0.7201 | 45050 | 0.0 | - |
0.7209 | 45100 | 0.0 | - |
0.7217 | 45150 | 0.0 | - |
0.7225 | 45200 | 0.0 | - |
0.7233 | 45250 | 0.0 | - |
0.7241 | 45300 | 0.0 | - |
0.7249 | 45350 | 0.0 | - |
0.7257 | 45400 | 0.0 | - |
0.7265 | 45450 | 0.0 | - |
0.7273 | 45500 | 0.0 | - |
0.7281 | 45550 | 0.0 | - |
0.7289 | 45600 | 0.0 | - |
0.7297 | 45650 | 0.0001 | - |
0.7305 | 45700 | 0.0 | - |
0.7313 | 45750 | 0.0 | - |
0.7321 | 45800 | 0.0 | - |
0.7329 | 45850 | 0.0 | - |
0.7337 | 45900 | 0.0 | - |
0.7345 | 45950 | 0.0 | - |
0.7353 | 46000 | 0.0 | - |
0.7361 | 46050 | 0.0 | - |
0.7369 | 46100 | 0.0 | - |
0.7377 | 46150 | 0.0 | - |
0.7385 | 46200 | 0.0 | - |
0.7393 | 46250 | 0.0 | - |
0.7401 | 46300 | 0.0 | - |
0.7409 | 46350 | 0.0 | - |
0.7417 | 46400 | 0.0 | - |
0.7425 | 46450 | 0.0 | - |
0.7433 | 46500 | 0.0 | - |
0.7440 | 46550 | 0.0 | - |
0.7448 | 46600 | 0.0 | - |
0.7456 | 46650 | 0.0 | - |
0.7464 | 46700 | 0.0 | - |
0.7472 | 46750 | 0.0 | - |
0.7480 | 46800 | 0.0 | - |
0.7488 | 46850 | 0.0 | - |
0.7496 | 46900 | 0.0 | - |
0.7504 | 46950 | 0.0 | - |
0.7512 | 47000 | 0.0 | - |
0.7520 | 47050 | 0.0 | - |
0.7528 | 47100 | 0.0 | - |
0.7536 | 47150 | 0.0 | - |
0.7544 | 47200 | 0.0 | - |
0.7552 | 47250 | 0.0 | - |
0.7560 | 47300 | 0.0 | - |
0.7568 | 47350 | 0.0 | - |
0.7576 | 47400 | 0.0 | - |
0.7584 | 47450 | 0.0 | - |
0.7592 | 47500 | 0.0 | - |
0.7600 | 47550 | 0.0 | - |
0.7608 | 47600 | 0.0 | - |
0.7616 | 47650 | 0.0 | - |
0.7624 | 47700 | 0.0 | - |
0.7632 | 47750 | 0.0 | - |
0.7640 | 47800 | 0.0 | - |
0.7648 | 47850 | 0.0 | - |
0.7656 | 47900 | 0.0 | - |
0.7664 | 47950 | 0.0 | - |
0.7672 | 48000 | 0.0 | - |
0.7680 | 48050 | 0.0 | - |
0.7688 | 48100 | 0.0 | - |
0.7696 | 48150 | 0.0 | - |
0.7704 | 48200 | 0.0 | - |
0.7712 | 48250 | 0.0 | - |
0.7720 | 48300 | 0.0 | - |
0.7728 | 48350 | 0.0 | - |
0.7736 | 48400 | 0.0 | - |
0.7744 | 48450 | 0.0 | - |
0.7752 | 48500 | 0.0 | - |
0.7760 | 48550 | 0.0 | - |
0.7768 | 48600 | 0.0 | - |
0.7776 | 48650 | 0.0 | - |
0.7784 | 48700 | 0.0 | - |
0.7792 | 48750 | 0.0 | - |
0.7800 | 48800 | 0.0 | - |
0.7808 | 48850 | 0.0 | - |
0.7816 | 48900 | 0.0 | - |
0.7824 | 48950 | 0.0 | - |
0.7832 | 49000 | 0.0 | - |
0.7840 | 49050 | 0.0 | - |
0.7848 | 49100 | 0.0 | - |
0.7856 | 49150 | 0.0 | - |
0.7864 | 49200 | 0.0 | - |
0.7872 | 49250 | 0.0 | - |
0.7880 | 49300 | 0.0 | - |
0.7888 | 49350 | 0.0 | - |
0.7896 | 49400 | 0.0 | - |
0.7904 | 49450 | 0.0 | - |
0.7912 | 49500 | 0.0 | - |
0.7920 | 49550 | 0.0 | - |
0.7928 | 49600 | 0.0 | - |
0.7936 | 49650 | 0.0 | - |
0.7944 | 49700 | 0.0 | - |
0.7952 | 49750 | 0.0 | - |
0.7960 | 49800 | 0.0 | - |
0.7968 | 49850 | 0.0 | - |
0.7976 | 49900 | 0.0 | - |
0.7984 | 49950 | 0.0 | - |
0.7992 | 50000 | 0.0 | - |
0.8000 | 50050 | 0.0 | - |
0.8008 | 50100 | 0.0 | - |
0.8016 | 50150 | 0.0 | - |
0.8024 | 50200 | 0.0 | - |
0.8032 | 50250 | 0.0 | - |
0.8040 | 50300 | 0.0 | - |
0.8048 | 50350 | 0.0 | - |
0.8056 | 50400 | 0.0 | - |
0.8064 | 50450 | 0.0 | - |
0.8072 | 50500 | 0.0 | - |
0.8080 | 50550 | 0.0 | - |
0.8088 | 50600 | 0.0 | - |
0.8096 | 50650 | 0.0 | - |
0.8104 | 50700 | 0.0 | - |
0.8112 | 50750 | 0.0 | - |
0.8120 | 50800 | 0.0 | - |
0.8128 | 50850 | 0.0 | - |
0.8136 | 50900 | 0.0 | - |
0.8144 | 50950 | 0.0 | - |
0.8152 | 51000 | 0.0 | - |
0.8160 | 51050 | 0.0 | - |
0.8168 | 51100 | 0.0 | - |
0.8176 | 51150 | 0.0 | - |
0.8184 | 51200 | 0.0 | - |
0.8192 | 51250 | 0.0 | - |
0.8200 | 51300 | 0.0 | - |
0.8208 | 51350 | 0.0 | - |
0.8216 | 51400 | 0.0 | - |
0.8224 | 51450 | 0.0 | - |
0.8232 | 51500 | 0.0 | - |
0.8240 | 51550 | 0.0 | - |
0.8248 | 51600 | 0.0 | - |
0.8256 | 51650 | 0.0 | - |
0.8264 | 51700 | 0.0 | - |
0.8272 | 51750 | 0.0 | - |
0.8280 | 51800 | 0.0 | - |
0.8288 | 51850 | 0.0 | - |
0.8296 | 51900 | 0.0 | - |
0.8304 | 51950 | 0.0 | - |
0.8312 | 52000 | 0.0 | - |
0.8320 | 52050 | 0.0 | - |
0.8328 | 52100 | 0.0 | - |
0.8336 | 52150 | 0.0 | - |
0.8344 | 52200 | 0.0 | - |
0.8352 | 52250 | 0.0 | - |
0.8360 | 52300 | 0.0 | - |
0.8368 | 52350 | 0.0 | - |
0.8376 | 52400 | 0.0 | - |
0.8384 | 52450 | 0.0 | - |
0.8392 | 52500 | 0.0 | - |
0.8400 | 52550 | 0.0 | - |
0.8408 | 52600 | 0.0 | - |
0.8416 | 52650 | 0.0 | - |
0.8424 | 52700 | 0.0 | - |
0.8432 | 52750 | 0.0 | - |
0.8439 | 52800 | 0.0 | - |
0.8447 | 52850 | 0.0 | - |
0.8455 | 52900 | 0.0 | - |
0.8463 | 52950 | 0.0 | - |
0.8471 | 53000 | 0.0 | - |
0.8479 | 53050 | 0.0 | - |
0.8487 | 53100 | 0.0 | - |
0.8495 | 53150 | 0.0 | - |
0.8503 | 53200 | 0.0 | - |
0.8511 | 53250 | 0.0 | - |
0.8519 | 53300 | 0.0 | - |
0.8527 | 53350 | 0.0 | - |
0.8535 | 53400 | 0.0 | - |
0.8543 | 53450 | 0.0 | - |
0.8551 | 53500 | 0.0 | - |
0.8559 | 53550 | 0.0 | - |
0.8567 | 53600 | 0.0 | - |
0.8575 | 53650 | 0.0 | - |
0.8583 | 53700 | 0.0 | - |
0.8591 | 53750 | 0.0 | - |
0.8599 | 53800 | 0.0 | - |
0.8607 | 53850 | 0.0 | - |
0.8615 | 53900 | 0.0 | - |
0.8623 | 53950 | 0.0 | - |
0.8631 | 54000 | 0.0 | - |
0.8639 | 54050 | 0.0 | - |
0.8647 | 54100 | 0.0 | - |
0.8655 | 54150 | 0.0 | - |
0.8663 | 54200 | 0.0 | - |
0.8671 | 54250 | 0.0 | - |
0.8679 | 54300 | 0.0 | - |
0.8687 | 54350 | 0.0 | - |
0.8695 | 54400 | 0.0 | - |
0.8703 | 54450 | 0.0 | - |
0.8711 | 54500 | 0.0 | - |
0.8719 | 54550 | 0.0 | - |
0.8727 | 54600 | 0.0 | - |
0.8735 | 54650 | 0.0 | - |
0.8743 | 54700 | 0.0 | - |
0.8751 | 54750 | 0.0 | - |
0.8759 | 54800 | 0.0 | - |
0.8767 | 54850 | 0.0 | - |
0.8775 | 54900 | 0.0 | - |
0.8783 | 54950 | 0.0 | - |
0.8791 | 55000 | 0.0 | - |
0.8799 | 55050 | 0.0 | - |
0.8807 | 55100 | 0.0 | - |
0.8815 | 55150 | 0.0 | - |
0.8823 | 55200 | 0.0 | - |
0.8831 | 55250 | 0.0 | - |
0.8839 | 55300 | 0.0 | - |
0.8847 | 55350 | 0.0 | - |
0.8855 | 55400 | 0.0 | - |
0.8863 | 55450 | 0.0 | - |
0.8871 | 55500 | 0.0 | - |
0.8879 | 55550 | 0.0 | - |
0.8887 | 55600 | 0.0004 | - |
0.8895 | 55650 | 0.0 | - |
0.8903 | 55700 | 0.0 | - |
0.8911 | 55750 | 0.0 | - |
0.8919 | 55800 | 0.0 | - |
0.8927 | 55850 | 0.0 | - |
0.8935 | 55900 | 0.0 | - |
0.8943 | 55950 | 0.0 | - |
0.8951 | 56000 | 0.0 | - |
0.8959 | 56050 | 0.0 | - |
0.8967 | 56100 | 0.0 | - |
0.8975 | 56150 | 0.0 | - |
0.8983 | 56200 | 0.0 | - |
0.8991 | 56250 | 0.0 | - |
0.8999 | 56300 | 0.0 | - |
0.9007 | 56350 | 0.0 | - |
0.9015 | 56400 | 0.0 | - |
0.9023 | 56450 | 0.0 | - |
0.9031 | 56500 | 0.0 | - |
0.9039 | 56550 | 0.0 | - |
0.9047 | 56600 | 0.0 | - |
0.9055 | 56650 | 0.0 | - |
0.9063 | 56700 | 0.0 | - |
0.9071 | 56750 | 0.0 | - |
0.9079 | 56800 | 0.0 | - |
0.9087 | 56850 | 0.0 | - |
0.9095 | 56900 | 0.0 | - |
0.9103 | 56950 | 0.0 | - |
0.9111 | 57000 | 0.0 | - |
0.9119 | 57050 | 0.0 | - |
0.9127 | 57100 | 0.0 | - |
0.9135 | 57150 | 0.0 | - |
0.9143 | 57200 | 0.0 | - |
0.9151 | 57250 | 0.0 | - |
0.9159 | 57300 | 0.0 | - |
0.9167 | 57350 | 0.0 | - |
0.9175 | 57400 | 0.0 | - |
0.9183 | 57450 | 0.0 | - |
0.9191 | 57500 | 0.0 | - |
0.9199 | 57550 | 0.0 | - |
0.9207 | 57600 | 0.0 | - |
0.9215 | 57650 | 0.0 | - |
0.9223 | 57700 | 0.0 | - |
0.9231 | 57750 | 0.0 | - |
0.9239 | 57800 | 0.0 | - |
0.9247 | 57850 | 0.0 | - |
0.9255 | 57900 | 0.0 | - |
0.9263 | 57950 | 0.0 | - |
0.9271 | 58000 | 0.0 | - |
0.9279 | 58050 | 0.0 | - |
0.9287 | 58100 | 0.0 | - |
0.9295 | 58150 | 0.0 | - |
0.9303 | 58200 | 0.0 | - |
0.9311 | 58250 | 0.0 | - |
0.9319 | 58300 | 0.0 | - |
0.9327 | 58350 | 0.0 | - |
0.9335 | 58400 | 0.0 | - |
0.9343 | 58450 | 0.0 | - |
0.9351 | 58500 | 0.0 | - |
0.9359 | 58550 | 0.0 | - |
0.9367 | 58600 | 0.0 | - |
0.9375 | 58650 | 0.0 | - |
0.9383 | 58700 | 0.0 | - |
0.9391 | 58750 | 0.0 | - |
0.9399 | 58800 | 0.0 | - |
0.9407 | 58850 | 0.0 | - |
0.9415 | 58900 | 0.0 | - |
0.9423 | 58950 | 0.0 | - |
0.9430 | 59000 | 0.0 | - |
0.9438 | 59050 | 0.0 | - |
0.9446 | 59100 | 0.0 | - |
0.9454 | 59150 | 0.0 | - |
0.9462 | 59200 | 0.0 | - |
0.9470 | 59250 | 0.0 | - |
0.9478 | 59300 | 0.0 | - |
0.9486 | 59350 | 0.0 | - |
0.9494 | 59400 | 0.0 | - |
0.9502 | 59450 | 0.0 | - |
0.9510 | 59500 | 0.0 | - |
0.9518 | 59550 | 0.0 | - |
0.9526 | 59600 | 0.0 | - |
0.9534 | 59650 | 0.0 | - |
0.9542 | 59700 | 0.0 | - |
0.9550 | 59750 | 0.0 | - |
0.9558 | 59800 | 0.0 | - |
0.9566 | 59850 | 0.0 | - |
0.9574 | 59900 | 0.0 | - |
0.9582 | 59950 | 0.0 | - |
0.9590 | 60000 | 0.0 | - |
0.9598 | 60050 | 0.0 | - |
0.9606 | 60100 | 0.0 | - |
0.9614 | 60150 | 0.0 | - |
0.9622 | 60200 | 0.0 | - |
0.9630 | 60250 | 0.0 | - |
0.9638 | 60300 | 0.0 | - |
0.9646 | 60350 | 0.0 | - |
0.9654 | 60400 | 0.0 | - |
0.9662 | 60450 | 0.0 | - |
0.9670 | 60500 | 0.0 | - |
0.9678 | 60550 | 0.0 | - |
0.9686 | 60600 | 0.0 | - |
0.9694 | 60650 | 0.0 | - |
0.9702 | 60700 | 0.0 | - |
0.9710 | 60750 | 0.0 | - |
0.9718 | 60800 | 0.0 | - |
0.9726 | 60850 | 0.0 | - |
0.9734 | 60900 | 0.0 | - |
0.9742 | 60950 | 0.0 | - |
0.9750 | 61000 | 0.0 | - |
0.9758 | 61050 | 0.0 | - |
0.9766 | 61100 | 0.0 | - |
0.9774 | 61150 | 0.0 | - |
0.9782 | 61200 | 0.0 | - |
0.9790 | 61250 | 0.0 | - |
0.9798 | 61300 | 0.0 | - |
0.9806 | 61350 | 0.0 | - |
0.9814 | 61400 | 0.0 | - |
0.9822 | 61450 | 0.0 | - |
0.9830 | 61500 | 0.0 | - |
0.9838 | 61550 | 0.0 | - |
0.9846 | 61600 | 0.0 | - |
0.9854 | 61650 | 0.0 | - |
0.9862 | 61700 | 0.0 | - |
0.9870 | 61750 | 0.0 | - |
0.9878 | 61800 | 0.0 | - |
0.9886 | 61850 | 0.0 | - |
0.9894 | 61900 | 0.0 | - |
0.9902 | 61950 | 0.0 | - |
0.9910 | 62000 | 0.0 | - |
0.9918 | 62050 | 0.0 | - |
0.9926 | 62100 | 0.0 | - |
0.9934 | 62150 | 0.0 | - |
0.9942 | 62200 | 0.0 | - |
0.9950 | 62250 | 0.0 | - |
0.9958 | 62300 | 0.0 | - |
0.9966 | 62350 | 0.0 | - |
0.9974 | 62400 | 0.0 | - |
0.9982 | 62450 | 0.0 | - |
0.9990 | 62500 | 0.0 | - |
0.9998 | 62550 | 0.0 | - |
1.0 | 62563 | - | 0.0913 |
Framework Versions
- Python: 3.12.7
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu124
- Datasets: 3.1.0
- Tokenizers: 0.21.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}