vit-base-beans / README.md
nateraw's picture
Update metadata with huggingface_hub
f0b917e
|
raw
history blame
2.24 kB
metadata
language: en
license: apache-2.0
tags:
  - generated_from_trainer
  - image-classification
datasets:
  - beans
metrics:
  - accuracy
widget:
  - src: https://huggingface.co/nateraw/vit-base-beans/resolve/main/healthy.jpeg
    example_title: Healthy
  - src: >-
      https://huggingface.co/nateraw/vit-base-beans/resolve/main/angular_leaf_spot.jpeg
    example_title: Angular Leaf Spot
  - src: https://huggingface.co/nateraw/vit-base-beans/resolve/main/bean_rust.jpeg
    example_title: Bean Rust
model-index:
  - name: vit-base-beans
    results:
      - task:
          type: image-classification
          name: Image Classification
        dataset:
          type: beans
          name: beans
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9774436090225563

vit-base-beans

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the beans dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0942
  • Accuracy: 0.9774

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 1337
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2809 1.0 130 0.2287 0.9699
0.1097 2.0 260 0.1676 0.9624
0.1027 3.0 390 0.0942 0.9774
0.0923 4.0 520 0.1104 0.9699
0.1726 5.0 650 0.1030 0.9699

Framework versions

  • Transformers 4.10.0.dev0
  • Pytorch 1.9.0+cu102
  • Datasets 1.11.1.dev0
  • Tokenizers 0.10.3