metadata
language: en
license: apache-2.0
tags:
- generated_from_trainer
- image-classification
datasets:
- beans
metrics:
- accuracy
widget:
- src: https://huggingface.co/nateraw/vit-base-beans/resolve/main/healthy.jpeg
example_title: Healthy
- src: >-
https://huggingface.co/nateraw/vit-base-beans/resolve/main/angular_leaf_spot.jpeg
example_title: Angular Leaf Spot
- src: https://huggingface.co/nateraw/vit-base-beans/resolve/main/bean_rust.jpeg
example_title: Bean Rust
model-index:
- name: vit-base-beans
results:
- task:
type: image-classification
name: Image Classification
dataset:
type: beans
name: beans
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9774436090225563
vit-base-beans
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the beans dataset. It achieves the following results on the evaluation set:
- Loss: 0.0942
- Accuracy: 0.9774
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.2809 | 1.0 | 130 | 0.2287 | 0.9699 |
0.1097 | 2.0 | 260 | 0.1676 | 0.9624 |
0.1027 | 3.0 | 390 | 0.0942 | 0.9774 |
0.0923 | 4.0 | 520 | 0.1104 | 0.9699 |
0.1726 | 5.0 | 650 | 0.1030 | 0.9699 |
Framework versions
- Transformers 4.10.0.dev0
- Pytorch 1.9.0+cu102
- Datasets 1.11.1.dev0
- Tokenizers 0.10.3