|
--- |
|
language: en |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
- image-classification |
|
datasets: |
|
- beans |
|
metrics: |
|
- accuracy |
|
widget: |
|
- src: https://huggingface.co/nateraw/vit-base-beans/resolve/main/healthy.jpeg |
|
example_title: Healthy |
|
- src: https://huggingface.co/nateraw/vit-base-beans/resolve/main/angular_leaf_spot.jpeg |
|
example_title: Angular Leaf Spot |
|
- src: https://huggingface.co/nateraw/vit-base-beans/resolve/main/bean_rust.jpeg |
|
example_title: Bean Rust |
|
model-index: |
|
- name: vit-base-beans |
|
results: |
|
- task: |
|
type: image-classification |
|
name: Image Classification |
|
dataset: |
|
type: beans |
|
name: beans |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9774436090225563 |
|
- task: |
|
type: image-classification |
|
name: Image Classification |
|
dataset: |
|
name: beans |
|
type: beans |
|
config: default |
|
split: test |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9453125 |
|
verified: true |
|
- name: Precision Macro |
|
type: precision |
|
value: 0.9453325082933705 |
|
verified: true |
|
- name: Precision Micro |
|
type: precision |
|
value: 0.9453125 |
|
verified: true |
|
- name: Precision Weighted |
|
type: precision |
|
value: 0.9452605321507761 |
|
verified: true |
|
- name: Recall Macro |
|
type: recall |
|
value: 0.945736434108527 |
|
verified: true |
|
- name: Recall Micro |
|
type: recall |
|
value: 0.9453125 |
|
verified: true |
|
- name: Recall Weighted |
|
type: recall |
|
value: 0.9453125 |
|
verified: true |
|
- name: F1 Macro |
|
type: f1 |
|
value: 0.9451827242524917 |
|
verified: true |
|
- name: F1 Micro |
|
type: f1 |
|
value: 0.9453125 |
|
verified: true |
|
- name: F1 Weighted |
|
type: f1 |
|
value: 0.944936150332226 |
|
verified: true |
|
- name: loss |
|
type: loss |
|
value: 0.26030588150024414 |
|
verified: true |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# vit-base-beans |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0942 |
|
- Accuracy: 0.9774 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 1337 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.2809 | 1.0 | 130 | 0.2287 | 0.9699 | |
|
| 0.1097 | 2.0 | 260 | 0.1676 | 0.9624 | |
|
| 0.1027 | 3.0 | 390 | 0.0942 | 0.9774 | |
|
| 0.0923 | 4.0 | 520 | 0.1104 | 0.9699 | |
|
| 0.1726 | 5.0 | 650 | 0.1030 | 0.9699 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.10.0.dev0 |
|
- Pytorch 1.9.0+cu102 |
|
- Datasets 1.11.1.dev0 |
|
- Tokenizers 0.10.3 |
|
|