See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: defog/llama-3-sqlcoder-8b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 4ba7abd1a783cca6_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/4ba7abd1a783cca6_train_data.json
type:
field_input: system
field_instruction: instruction
field_output: chosen
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: nat-hunt/15c5d1f8-21bd-48f2-8b00-a39ebe9fdc5d
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10
micro_batch_size: 2
mlflow_experiment_name: /tmp/4ba7abd1a783cca6_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: <|eot_id|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: dde4cb64-07df-4e03-8a22-1f218483bad1
wandb_project: Birthday-SN56-4-Gradients-On-Demand
wandb_run: your_name
wandb_runid: dde4cb64-07df-4e03-8a22-1f218483bad1
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
15c5d1f8-21bd-48f2-8b00-a39ebe9fdc5d
This model is a fine-tuned version of defog/llama-3-sqlcoder-8b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0611
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9834 | 0.0001 | 1 | 1.1969 |
1.2659 | 0.0002 | 3 | 1.1944 |
1.0699 | 0.0003 | 6 | 1.1531 |
1.1096 | 0.0005 | 9 | 1.0611 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for nat-hunt/15c5d1f8-21bd-48f2-8b00-a39ebe9fdc5d
Base model
defog/llama-3-sqlcoder-8b