nandysoham/Dell-theme-finetuned-overfinetuned
This model is a fine-tuned version of nandysoham/distilbert-base-uncased-finetuned-squad on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.4305
- Train End Logits Accuracy: 0.7857
- Train Start Logits Accuracy: 0.8006
- Validation Loss: 2.3316
- Validation End Logits Accuracy: 0.1647
- Validation Start Logits Accuracy: 0.2118
- Epoch: 9
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 210, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
---|---|---|---|---|---|---|
1.5691 | 0.5179 | 0.5119 | 1.2093 | 0.4588 | 0.4588 | 0 |
0.9333 | 0.6101 | 0.5833 | 1.2828 | 0.3176 | 0.3647 | 1 |
0.7924 | 0.6042 | 0.5982 | 1.4627 | 0.2824 | 0.2824 | 2 |
0.6858 | 0.6905 | 0.6786 | 1.5630 | 0.3059 | 0.2941 | 3 |
0.6562 | 0.6518 | 0.6815 | 1.7647 | 0.2235 | 0.2118 | 4 |
0.5996 | 0.7054 | 0.6994 | 2.0109 | 0.2118 | 0.2471 | 5 |
0.5277 | 0.7440 | 0.7589 | 2.1286 | 0.1765 | 0.2000 | 6 |
0.4810 | 0.7679 | 0.7798 | 2.2263 | 0.1529 | 0.2000 | 7 |
0.4488 | 0.8036 | 0.7887 | 2.2999 | 0.1529 | 0.1882 | 8 |
0.4305 | 0.7857 | 0.8006 | 2.3316 | 0.1647 | 0.2118 | 9 |
Framework versions
- Transformers 4.25.1
- TensorFlow 2.9.2
- Datasets 2.8.0
- Tokenizers 0.13.2
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.