nandakishormpai's picture
update model card README.md
3ab2185
|
raw
history blame
3.92 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: t5-small-github-repo-tag-generation
    results: []

t5-small-github-repo-tag-generation

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5366
  • Rouge1: 20.3802
  • Rouge2: 4.7145
  • Rougel: 18.411
  • Rougelsum: 18.3921
  • Gen Len: 19.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.4594 1.0 66 0.9943 3.9283 0.0 3.7797 3.7332 19.0
0.9732 2.0 132 0.8077 1.3301 0.0 1.2269 1.2141 19.0
0.8414 3.0 198 0.7334 4.3519 0.3755 4.2376 4.2974 19.0
0.7843 4.0 264 0.6971 17.7535 1.5237 16.2304 16.1943 19.0
0.7463 5.0 330 0.6655 19.3128 2.2678 16.5655 16.5492 19.0
0.7182 6.0 396 0.6412 19.8633 3.3647 17.5046 17.4973 19.0
0.6959 7.0 462 0.6286 20.274 3.1415 17.8527 17.9039 19.0
0.6793 8.0 528 0.6121 19.9915 3.5137 18.1718 18.2166 19.0
0.6666 9.0 594 0.6021 20.073 3.6482 18.3466 18.3829 19.0
0.6561 10.0 660 0.5923 20.6227 3.8946 18.6466 18.694 19.0
0.6471 11.0 726 0.5867 20.3914 4.1584 18.5822 18.5744 19.0
0.638 12.0 792 0.5776 20.9846 4.6568 18.8597 18.8979 19.0
0.6343 13.0 858 0.5715 19.7497 4.4363 18.262 18.2526 19.0
0.6267 14.0 924 0.5670 19.5839 4.2251 17.9116 17.9491 19.0
0.6211 15.0 990 0.5602 19.4954 4.4755 17.9726 17.9203 19.0
0.6169 16.0 1056 0.5557 19.6247 4.2106 18.0385 18.0922 19.0
0.6103 17.0 1122 0.5532 19.8744 4.4672 18.1794 18.1689 19.0
0.6062 18.0 1188 0.5505 19.8744 4.3368 18.1794 18.1689 19.0
0.6016 19.0 1254 0.5461 20.083 4.3446 18.4196 18.383 19.0
0.5987 20.0 1320 0.5426 20.029 4.5884 18.189 18.1371 19.0
0.5968 21.0 1386 0.5407 19.5394 4.0665 17.8456 17.7709 19.0
0.5957 22.0 1452 0.5387 19.6368 4.5837 18.0482 18.0676 19.0
0.5923 23.0 1518 0.5366 20.0744 4.8413 18.3513 18.2666 19.0
0.588 24.0 1584 0.5366 20.3802 4.7145 18.411 18.3921 19.0

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.0
  • Tokenizers 0.13.2