File size: 2,546 Bytes
3098b65
 
4f32e48
 
 
 
 
 
 
 
 
3098b65
 
4f32e48
 
 
 
 
7be1dfd
4f32e48
d4650c7
552c325
 
d4650c7
3903c8b
552c325
 
d4650c7
552c325
 
 
 
 
 
 
 
 
3903c8b
552c325
 
d4650c7
552c325
 
 
 
 
 
 
 
 
 
 
 
 
 
4f32e48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3903c8b
 
 
4f32e48
 
 
 
d4650c7
4f32e48
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
library_name: transformers
license: other
base_model: nancyalarabawy/segformer-finetuned-segments-plantleafdisease-may-25
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-finetuned-segments-plantleafdisease-DEC
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-finetuned-segments-plantleafdisease-DEC

This model is a fine-tuned version of [nancyalarabawy/segformer-finetuned-segments-plantleafdisease-may-25](https://huggingface.co/nancyalarabawy/segformer-finetuned-segments-plantleafdisease-may-25) on the all plus aug dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.0249
- eval_mean_iou: 0.7357
- eval_mean_accuracy: 0.9156
- eval_overall_accuracy: 0.9916
- eval_accuracy_unlabeled: nan
- eval_accuracy_healthy: 0.9794
- eval_accuracy_blast: 0.8521
- eval_accuracy_background: 0.9975
- eval_accuracy_alstonia herpes: 0.8728
- eval_accuracy_mango anthracnose: 0.9309
- eval_accuracy_pomengrate spots: 0.9346
- eval_accuracy_blight spots: 0.8934
- eval_accuracy_chlorisis: 0.9443
- eval_accuracy_leaf spots: 0.9201
- eval_accuracy_apple scab: 0.8382
- eval_accuracy_black rot: 0.8716
- eval_accuracy_cedar rust: 0.9525
- eval_iou_unlabeled: 0.0
- eval_iou_healthy: 0.9690
- eval_iou_blast: 0.7758
- eval_iou_background: 0.9954
- eval_iou_alstonia herpes: 0.7583
- eval_iou_mango anthracnose: 0.6425
- eval_iou_pomengrate spots: 0.8681
- eval_iou_blight spots: 0.6074
- eval_iou_chlorisis: 0.9190
- eval_iou_leaf spots: 0.7070
- eval_iou_apple scab: 0.7455
- eval_iou_black rot: 0.8060
- eval_iou_cedar rust: 0.7695
- eval_runtime: 155.0063
- eval_samples_per_second: 16.915
- eval_steps_per_second: 1.058
- epoch: 13.3486
- step: 17500

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 200
- num_epochs: 15

### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0