segformer-finetuned-segments-plantleafdisease-DEC
This model is a fine-tuned version of nancyalarabawy/segformer-finetuned-segments-plantleafdisease-may-25 on the all plus aug dataset. It achieves the following results on the evaluation set:
- eval_loss: 0.0249
- eval_mean_iou: 0.7357
- eval_mean_accuracy: 0.9156
- eval_overall_accuracy: 0.9916
- eval_accuracy_unlabeled: nan
- eval_accuracy_healthy: 0.9794
- eval_accuracy_blast: 0.8521
- eval_accuracy_background: 0.9975
- eval_accuracy_alstonia herpes: 0.8728
- eval_accuracy_mango anthracnose: 0.9309
- eval_accuracy_pomengrate spots: 0.9346
- eval_accuracy_blight spots: 0.8934
- eval_accuracy_chlorisis: 0.9443
- eval_accuracy_leaf spots: 0.9201
- eval_accuracy_apple scab: 0.8382
- eval_accuracy_black rot: 0.8716
- eval_accuracy_cedar rust: 0.9525
- eval_iou_unlabeled: 0.0
- eval_iou_healthy: 0.9690
- eval_iou_blast: 0.7758
- eval_iou_background: 0.9954
- eval_iou_alstonia herpes: 0.7583
- eval_iou_mango anthracnose: 0.6425
- eval_iou_pomengrate spots: 0.8681
- eval_iou_blight spots: 0.6074
- eval_iou_chlorisis: 0.9190
- eval_iou_leaf spots: 0.7070
- eval_iou_apple scab: 0.7455
- eval_iou_black rot: 0.8060
- eval_iou_cedar rust: 0.7695
- eval_runtime: 155.0063
- eval_samples_per_second: 16.915
- eval_steps_per_second: 1.058
- epoch: 13.3486
- step: 17500
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 200
- num_epochs: 15
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 220
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.