opus-mt-en-zh-finetuned-audio-product

This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-zh on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0850
  • Bleu: 57.8776

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu
No log 1.0 91 0.1877 23.9653
3.4865 2.0 182 0.1360 34.0082
0.2037 3.0 273 0.1121 40.8645
0.1341 4.0 364 0.0990 43.6098
0.0876 5.0 455 0.0930 50.9630
0.0619 6.0 546 0.0894 50.6475
0.0411 7.0 637 0.0871 55.5762
0.0284 8.0 728 0.0860 54.0646
0.0206 9.0 819 0.0849 55.7455
0.0159 10.0 910 0.0850 57.8776

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3
Downloads last month
16
Safetensors
Model size
77.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nananatsu/opus-mt-en-zh-finetuned-audio-product

Quantized
(3)
this model