paligemma_VQAv2_ko

This model is a fine-tuned version of google/paligemma-3b-pt-224 on an korean VQAv2 dataset.(HuggingFaceM4/VQAv2)

ds = load_dataset('HuggingFaceM4/VQAv2', split="train[:100%]",cache_dir=root_path+'dataset/')

Model description

This model was finetuned using VQAv2 datasets translated into KOREAN.

Intended uses & limitations

Nothing

Training and evaluation data

Nothing

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2
  • num_epochs: 2

Framework versions

  • PEFT 0.8.2
  • Transformers 4.45.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
26
Inference Examples
Inference API (serverless) does not yet support peft models for this pipeline type.

Model tree for namyi/paligemma_VQAv2_ko

Adapter
(164)
this model

Dataset used to train namyi/paligemma_VQAv2_ko