YAML Metadata Error: "language[0]" must only contain lowercase characters
YAML Metadata Error: "language[0]" with value "sv-SE" is not valid. It must be an ISO 639-1, 639-2 or 639-3 code (two/three letters), or a special value like "code", "multilingual". If you want to use BCP-47 identifiers, you can specify them in language_bcp47.

rasr_sample

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - SV-SE dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3147
  • Wer: 0.2676

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 50.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.3332 1.45 500 3.3031 1.0
2.9272 2.91 1000 2.9353 0.9970
2.0736 4.36 1500 1.1565 0.8714
1.7339 5.81 2000 0.7156 0.6688
1.5989 7.27 2500 0.5791 0.5519
1.4916 8.72 3000 0.5038 0.5169
1.4562 10.17 3500 0.4861 0.4805
1.3893 11.63 4000 0.4584 0.4761
1.3797 13.08 4500 0.4298 0.4686
1.3508 14.53 5000 0.4138 0.3744
1.3165 15.99 5500 0.4015 0.3578
1.281 17.44 6000 0.3883 0.3472
1.2682 18.89 6500 0.3904 0.3434
1.2477 20.35 7000 0.3726 0.3321
1.2364 21.8 7500 0.3685 0.3281
1.2041 23.26 8000 0.3597 0.3194
1.1901 24.71 8500 0.3542 0.3203
1.1903 26.16 9000 0.3500 0.3138
1.1677 27.61 9500 0.3458 0.3067
1.1718 29.07 10000 0.3595 0.3112
1.1562 30.52 10500 0.3433 0.3022
1.1392 31.97 11000 0.3440 0.2936
1.1258 33.43 11500 0.3396 0.2950
1.1067 34.88 12000 0.3379 0.2939
1.0953 36.34 12500 0.3370 0.2868
1.0835 37.79 13000 0.3317 0.2860
1.0772 39.24 13500 0.3302 0.2854
1.0853 40.7 14000 0.3265 0.2783
1.0689 42.15 14500 0.3306 0.2770
1.0394 43.6 15000 0.3233 0.2757
1.0581 45.06 15500 0.3199 0.2713
1.0362 46.51 16000 0.3154 0.2683
1.0406 47.96 16500 0.3176 0.2688
1.0082 49.42 17000 0.3149 0.2679

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train naleraphael/rasr_sample