medical-ner-roberta

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1293
  • Precision: 0.9306
  • Recall: 0.9431
  • F1: 0.9368
  • Accuracy: 0.9792

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 90 0.6883 0.4376 0.4556 0.4464 0.7834
No log 2.0 180 0.4971 0.5779 0.6286 0.6022 0.8343
No log 3.0 270 0.4184 0.5892 0.7451 0.6581 0.8569
No log 4.0 360 0.3410 0.6474 0.8062 0.7182 0.8893
No log 5.0 450 0.2515 0.7554 0.8181 0.7855 0.9270
0.5383 6.0 540 0.2256 0.7738 0.8577 0.8136 0.9338
0.5383 7.0 630 0.1782 0.8270 0.8824 0.8538 0.9488
0.5383 8.0 720 0.1734 0.8271 0.8977 0.8610 0.9554
0.5383 9.0 810 0.1474 0.8702 0.9123 0.8908 0.9661
0.5383 10.0 900 0.1476 0.8806 0.9216 0.9006 0.9685
0.5383 11.0 990 0.1404 0.8913 0.9304 0.9105 0.9722
0.0733 12.0 1080 0.1354 0.9085 0.9273 0.9178 0.9741
0.0733 13.0 1170 0.1332 0.9112 0.9266 0.9188 0.9739
0.0733 14.0 1260 0.1337 0.9072 0.9396 0.9231 0.9755
0.0733 15.0 1350 0.1332 0.9283 0.9362 0.9322 0.9776
0.0733 16.0 1440 0.1293 0.9321 0.9389 0.9355 0.9783
0.0236 17.0 1530 0.1307 0.9253 0.9431 0.9341 0.9786
0.0236 18.0 1620 0.1293 0.9278 0.9439 0.9358 0.9788
0.0236 19.0 1710 0.1294 0.9306 0.9431 0.9368 0.9792
0.0236 20.0 1800 0.1293 0.9306 0.9431 0.9368 0.9792

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
11
Safetensors
Model size
354M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.