|
--- |
|
license: apache-2.0 |
|
base_model: openai/whisper-base.en |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: whispherMusic |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whispherMusic |
|
|
|
This model is a fine-tuned version of [openai/whisper-base.en](https://huggingface.co/openai/whisper-base.en) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6119 |
|
- Rouge1: 44.2768 |
|
- Rouge2: 23.1307 |
|
- Rougel: 36.7378 |
|
- Rougelsum: 36.7159 |
|
- Gen Len: 72.18 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 2.3982 | 1.0 | 959 | 2.0620 | 26.4298 | 5.9908 | 23.2899 | 23.3213 | 64.6 | |
|
| 1.7265 | 2.0 | 1918 | 1.6701 | 27.8931 | 6.8526 | 24.1834 | 24.1954 | 65.1 | |
|
| 1.4192 | 3.0 | 2877 | 1.3889 | 30.545 | 8.5986 | 26.1328 | 26.1093 | 63.72 | |
|
| 1.215 | 4.0 | 3836 | 1.1685 | 32.7599 | 10.5476 | 27.2588 | 27.2407 | 66.01 | |
|
| 1.0452 | 5.0 | 4795 | 0.9892 | 33.4751 | 11.1674 | 27.5111 | 27.4954 | 65.03 | |
|
| 0.8959 | 6.0 | 5754 | 0.8506 | 35.995 | 13.1211 | 29.6986 | 29.745 | 67.8 | |
|
| 0.7872 | 7.0 | 6713 | 0.7457 | 39.7262 | 16.9675 | 32.8461 | 32.8319 | 70.65 | |
|
| 0.6891 | 8.0 | 7672 | 0.6733 | 41.6536 | 19.7787 | 34.6224 | 34.5889 | 67.49 | |
|
| 0.6223 | 9.0 | 8631 | 0.6272 | 43.4958 | 21.9107 | 36.5012 | 36.4477 | 72.2 | |
|
| 0.5763 | 10.0 | 9590 | 0.6119 | 44.2768 | 23.1307 | 36.7378 | 36.7159 | 72.18 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.2 |
|
- Tokenizers 0.13.3 |
|
|