segformer-b2-finetuned-ade-512-512_corm

This model is a fine-tuned version of nvidia/segformer-b2-finetuned-ade-512-512 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0415
  • Mean Iou: 0.9264
  • Mean Accuracy: 0.9599
  • Overall Accuracy: 0.9860
  • Accuracy Background: 0.9978
  • Accuracy Corm: 0.9362
  • Accuracy Damage: 0.9456
  • Iou Background: 0.9942
  • Iou Corm: 0.8799
  • Iou Damage: 0.9052

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Corm Accuracy Damage Iou Background Iou Corm Iou Damage
0.8746 0.9524 20 0.8170 0.4637 0.6489 0.8404 0.9133 0.0390 0.9944 0.9132 0.0327 0.4451
0.61 1.9048 40 0.4500 0.7608 0.8748 0.9451 0.9731 0.6946 0.9566 0.9730 0.6023 0.7071
0.3681 2.8571 60 0.2802 0.8597 0.9314 0.9711 0.9879 0.8621 0.9443 0.9873 0.7716 0.8201
0.2433 3.8095 80 0.2201 0.8866 0.9456 0.9774 0.9916 0.9159 0.9293 0.9904 0.8181 0.8513
0.1669 4.7619 100 0.1607 0.8891 0.9431 0.9783 0.9930 0.8723 0.9640 0.9915 0.8178 0.8580
0.1484 5.7143 120 0.1250 0.9017 0.9489 0.9812 0.9964 0.9423 0.9080 0.9932 0.8432 0.8688
0.1126 6.6667 140 0.1024 0.9092 0.9524 0.9827 0.9962 0.9247 0.9363 0.9934 0.8539 0.8804
0.0909 7.6190 160 0.0932 0.9017 0.9492 0.9813 0.9968 0.9563 0.8944 0.9935 0.8445 0.8670
0.0994 8.5714 180 0.0803 0.9122 0.9527 0.9833 0.9967 0.9118 0.9495 0.9936 0.8568 0.8861
0.0768 9.5238 200 0.0716 0.9147 0.9533 0.9838 0.9975 0.9247 0.9376 0.9937 0.8615 0.8889
0.0749 10.4762 220 0.0671 0.9177 0.9550 0.9844 0.9973 0.9191 0.9487 0.9939 0.8661 0.8932
0.0663 11.4286 240 0.0668 0.9097 0.9528 0.9829 0.9973 0.9528 0.9083 0.9939 0.8558 0.8795
0.0725 12.3810 260 0.0608 0.9189 0.9554 0.9847 0.9974 0.9123 0.9564 0.9940 0.8677 0.8951
0.0594 13.3333 280 0.0588 0.9167 0.9533 0.9843 0.9975 0.9000 0.9625 0.9940 0.8622 0.8940
0.062 14.2857 300 0.0552 0.9201 0.9565 0.9849 0.9972 0.9170 0.9553 0.9941 0.8691 0.8970
0.0535 15.2381 320 0.0543 0.9195 0.9559 0.9848 0.9972 0.9078 0.9626 0.9942 0.8683 0.8962
0.0555 16.1905 340 0.0517 0.9212 0.9566 0.9851 0.9973 0.9113 0.9612 0.9942 0.8704 0.8990
0.0553 17.1429 360 0.0513 0.9198 0.9553 0.9849 0.9975 0.9047 0.9638 0.9942 0.8679 0.8974
0.0572 18.0952 380 0.0501 0.9219 0.9563 0.9853 0.9977 0.9108 0.9603 0.9942 0.8713 0.9002
0.0503 19.0476 400 0.0483 0.9245 0.9573 0.9856 0.9981 0.9212 0.9525 0.9940 0.8757 0.9037
0.0539 20.0 420 0.0474 0.9245 0.9593 0.9857 0.9974 0.9309 0.9497 0.9942 0.8769 0.9024
0.0542 20.9524 440 0.0484 0.9202 0.9575 0.9849 0.9978 0.9511 0.9235 0.9941 0.8718 0.8949
0.033 21.9048 460 0.0478 0.9209 0.9576 0.9850 0.9977 0.9464 0.9287 0.9941 0.8726 0.8961
0.0421 22.8571 480 0.0452 0.9247 0.9591 0.9857 0.9974 0.9244 0.9555 0.9942 0.8766 0.9033
0.0472 23.8095 500 0.0455 0.9243 0.9583 0.9857 0.9976 0.9231 0.9543 0.9942 0.8759 0.9028
0.0381 24.7619 520 0.0456 0.9233 0.9570 0.9855 0.9977 0.9109 0.9625 0.9942 0.8732 0.9026
0.0486 25.7143 540 0.0444 0.9249 0.9593 0.9857 0.9978 0.9408 0.9394 0.9941 0.8780 0.9026
0.0501 26.6667 560 0.0458 0.9208 0.9579 0.9850 0.9977 0.9508 0.9252 0.9942 0.8725 0.8957
0.0343 27.6190 580 0.0436 0.9251 0.9594 0.9857 0.9978 0.9413 0.9391 0.9941 0.8782 0.9031
0.0407 28.5714 600 0.0434 0.9251 0.9597 0.9858 0.9977 0.9416 0.9396 0.9942 0.8784 0.9028
0.0419 29.5238 620 0.0445 0.9221 0.9586 0.9852 0.9977 0.9496 0.9285 0.9942 0.8743 0.8978
0.0506 30.4762 640 0.0425 0.9262 0.9593 0.9860 0.9978 0.9311 0.9491 0.9942 0.8791 0.9053
0.0422 31.4286 660 0.0424 0.9262 0.9595 0.9860 0.9977 0.9267 0.9540 0.9942 0.8790 0.9054
0.0362 32.3810 680 0.0425 0.9258 0.9600 0.9859 0.9977 0.9402 0.9421 0.9942 0.8793 0.9039
0.0437 33.3333 700 0.0424 0.9262 0.9599 0.9860 0.9978 0.9377 0.9441 0.9942 0.8796 0.9047
0.0363 34.2857 720 0.0415 0.9264 0.9602 0.9860 0.9976 0.9367 0.9463 0.9942 0.8800 0.9049
0.039 35.2381 740 0.0421 0.9267 0.9596 0.9861 0.9978 0.9290 0.9521 0.9942 0.8798 0.9060
0.0425 36.1905 760 0.0418 0.9259 0.9598 0.9859 0.9978 0.9391 0.9426 0.9942 0.8794 0.9040
0.0462 37.1429 780 0.0417 0.9267 0.9600 0.9861 0.9976 0.9311 0.9513 0.9942 0.8801 0.9057
0.0466 38.0952 800 0.0416 0.9261 0.9599 0.9860 0.9978 0.9392 0.9427 0.9942 0.8795 0.9045
0.0428 39.0476 820 0.0414 0.9266 0.9598 0.9861 0.9978 0.9323 0.9494 0.9942 0.8800 0.9057
0.04 40.0 840 0.0415 0.9264 0.9599 0.9860 0.9978 0.9362 0.9456 0.9942 0.8799 0.9052

Framework versions

  • Transformers 4.44.1
  • Pytorch 2.6.0+cpu
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
10
Safetensors
Model size
27.4M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for mujerry/segformer-b2-finetuned-ade-512-512_corm

Finetuned
(8)
this model