Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: Qwen/Qwen2.5-14B-Instruct

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: output.jsonl
    type:
      field_instruction: instruction
      field_input: input
      field_output: output
      format: "<|im_start|>system\n{instruction}<|im_end|>\n<|im_start|>user\n{input}<|im_end|>\n<|im_start|>assistant\n"

special_tokens:
  bos_token:
  eos_token: "<|im_end|>"
  pad_token: "<|endoftext|>"

dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out

sequence_len: 4096
sample_packing: false
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project: mssong_axolotl
wandb_entity: mssong
wandb_watch:
wandb_run_id: 
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 3
optimizer:
lr_scheduler: cosine
learning_rate: 0.00005
train_on_inputs:
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience: 3
local_rank:
logging_steps: 10
xformers_attention:
flash_attention: true
#warmup_ratio: 0.02
warmup_steps: 100
eval_steps: 100
save_steps: 500
save_total_limit: 2
eval_sample_packing:
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
trust_remote_code: true

outputs/lora-out

This model is a fine-tuned version of Qwen/Qwen2.5-14B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0405

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • total_eval_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
No log 0.0035 1 0.6979
0.046 0.3515 100 0.0793
0.0259 0.7030 200 0.0519
0.0242 1.0545 300 0.0447
0.0194 1.4060 400 0.0435
0.016 1.7575 500 0.0427
0.0097 2.1090 600 0.0392
0.0179 2.4605 700 0.0410
0.0081 2.8120 800 0.0405

Framework versions

  • PEFT 0.13.0
  • Transformers 4.45.1
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.20.0
Downloads last month
5
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for mssongit/Qwen2.5-14B-SFT-LoRA-1200

Base model

Qwen/Qwen2.5-14B
Adapter
(12)
this model