msaavedra1234 commited on
Commit
7d38f1d
1 Parent(s): 05f053b

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +142 -0
README.md ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/Phi-3-mini-4k-instruct
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: phi3-out
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
15
+ <details><summary>See axolotl config</summary>
16
+
17
+ axolotl version: `0.4.1`
18
+ ```yaml
19
+ base_model: microsoft/Phi-3-mini-4k-instruct
20
+ model_type: AutoModelForCausalLM
21
+ tokenizer_type: AutoTokenizer
22
+
23
+ trust_remote_code: true
24
+ load_in_8bit: false
25
+ load_in_4bit: false
26
+ strict: false
27
+
28
+ datasets:
29
+ - path: dataset.json
30
+ ds_type: json
31
+ type: completion
32
+
33
+ dataset_prepared_path:
34
+ val_set_size: 0.05
35
+ output_dir: ./phi3-out
36
+
37
+ sequence_len: 4096
38
+ sample_packing: false
39
+ #pad_to_sequence_len: true
40
+
41
+ adapter:
42
+ lora_model_dir:
43
+ lora_r:
44
+ lora_alpha:
45
+ lora_dropout:
46
+ lora_target_linear:
47
+ lora_fan_in_fan_out:
48
+
49
+ wandb_project:
50
+ wandb_entity:
51
+ wandb_watch:
52
+ wandb_name:
53
+ wandb_log_model:
54
+
55
+ gradient_accumulation_steps: 1
56
+ micro_batch_size: 1
57
+ num_epochs: 2
58
+ optimizer: adamw_torch
59
+ # adam_beta2: 0.95
60
+ # adam_epsilon: 0.00001
61
+ # max_grad_norm: 1.0
62
+ lr_scheduler: cosine
63
+ learning_rate: 0.0002 # 0.000003 #0.0002
64
+
65
+ train_on_inputs: false
66
+ group_by_length: false
67
+ bf16: auto
68
+ fp16:
69
+ tf32: true
70
+
71
+ # gradient_checkpointing: true
72
+ # gradient_checkpointing_kwargs:
73
+ # use_reentrant: True
74
+ early_stopping_patience:
75
+ resume_from_checkpoint:
76
+ local_rank:
77
+ logging_steps: 1
78
+ xformers_attention:
79
+ flash_attention: true
80
+
81
+ #warmup_steps: 100
82
+ #evals_per_epoch: 4
83
+ # saves_per_epoch: 1
84
+ debug:
85
+ deepspeed:
86
+ weight_decay: 0.1
87
+ fsdp:
88
+ fsdp_config:
89
+ #resize_token_embeddings_to_32x: true
90
+ special_tokens:
91
+ pad_token: "<|endoftext|>"
92
+ eos_token: "<|end|>"
93
+ ```
94
+
95
+ </details><br>
96
+
97
+ # phi3-out
98
+
99
+ This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on the None dataset.
100
+ It achieves the following results on the evaluation set:
101
+ - Loss: 1.8809
102
+
103
+ ## Model description
104
+
105
+ More information needed
106
+
107
+ ## Intended uses & limitations
108
+
109
+ More information needed
110
+
111
+ ## Training and evaluation data
112
+
113
+ More information needed
114
+
115
+ ## Training procedure
116
+
117
+ ### Training hyperparameters
118
+
119
+ The following hyperparameters were used during training:
120
+ - learning_rate: 0.0002
121
+ - train_batch_size: 1
122
+ - eval_batch_size: 1
123
+ - seed: 42
124
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
125
+ - lr_scheduler_type: cosine
126
+ - lr_scheduler_warmup_steps: 100
127
+ - num_epochs: 2
128
+
129
+ ### Training results
130
+
131
+ | Training Loss | Epoch | Step | Validation Loss |
132
+ |:-------------:|:-----:|:-----:|:---------------:|
133
+ | 0.4023 | 1.0 | 7628 | 1.4132 |
134
+ | 0.1342 | 2.0 | 15256 | 1.8809 |
135
+
136
+
137
+ ### Framework versions
138
+
139
+ - Transformers 4.42.3
140
+ - Pytorch 2.3.1+cu121
141
+ - Datasets 2.19.1
142
+ - Tokenizers 0.19.1