Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: microsoft/Phi-3-mini-4k-instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: dataset.json
    ds_type: json
    type: completion

dataset_prepared_path:
val_set_size: 0.05
output_dir: ./phi3-out

sequence_len: 4096
sample_packing: false
#pad_to_sequence_len: true

adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_torch
# adam_beta2: 0.95
# adam_epsilon: 0.00001
# max_grad_norm: 1.0
lr_scheduler: cosine
learning_rate: 0.0002 # 0.000003 #0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true

# gradient_checkpointing: true
# gradient_checkpointing_kwargs:
#   use_reentrant: True
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

#warmup_steps: 100
#evals_per_epoch: 4
# saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
#resize_token_embeddings_to_32x: true
special_tokens:
  pad_token: "<|endoftext|>"
  eos_token: "<|end|>"

phi3-out

This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8809

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
0.4023 1.0 7628 1.4132
0.1342 2.0 15256 1.8809

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for msaavedra1234/phi3_parise

Finetuned
(144)
this model