|
---
|
|
base_model: dccuchile/bert-base-spanish-wwm-cased
|
|
tags:
|
|
- generated_from_trainer
|
|
metrics:
|
|
- accuracy
|
|
- f1
|
|
model-index:
|
|
- name: FNST_trad_2g
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# FNST_trad_2g
|
|
|
|
This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on an unknown dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 0.8657
|
|
- Accuracy: 0.6837
|
|
- F1: 0.6778
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 1e-07
|
|
- train_batch_size: 16
|
|
- eval_batch_size: 16
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- num_epochs: 16
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
|
|
| 0.9579 | 1.0 | 3125 | 0.9375 | 0.5919 | 0.5798 |
|
|
| 0.8774 | 2.0 | 6250 | 0.8804 | 0.6252 | 0.6138 |
|
|
| 0.8269 | 3.0 | 9375 | 0.8451 | 0.6401 | 0.6322 |
|
|
| 0.7742 | 4.0 | 12500 | 0.8269 | 0.6491 | 0.6427 |
|
|
| 0.7478 | 5.0 | 15625 | 0.8143 | 0.6590 | 0.6521 |
|
|
| 0.7171 | 6.0 | 18750 | 0.8046 | 0.6616 | 0.6547 |
|
|
| 0.7033 | 7.0 | 21875 | 0.8018 | 0.6662 | 0.6598 |
|
|
| 0.6641 | 8.0 | 25000 | 0.7981 | 0.6733 | 0.6651 |
|
|
| 0.655 | 9.0 | 28125 | 0.8056 | 0.6736 | 0.6668 |
|
|
| 0.6189 | 10.0 | 31250 | 0.8114 | 0.6751 | 0.6688 |
|
|
| 0.5952 | 11.0 | 34375 | 0.8171 | 0.6778 | 0.6718 |
|
|
| 0.5759 | 12.0 | 37500 | 0.8190 | 0.6779 | 0.6733 |
|
|
| 0.536 | 13.0 | 40625 | 0.8297 | 0.6815 | 0.6768 |
|
|
| 0.5282 | 14.0 | 43750 | 0.8351 | 0.6799 | 0.6733 |
|
|
| 0.5146 | 15.0 | 46875 | 0.8632 | 0.6853 | 0.6794 |
|
|
| 0.4846 | 16.0 | 50000 | 0.8657 | 0.6837 | 0.6778 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.37.2
|
|
- Pytorch 2.1.0+cu121
|
|
- Datasets 2.16.1
|
|
- Tokenizers 0.15.1
|
|
|