julien-c's picture
julien-c HF staff
Migrate model card from transformers-repo
a0f93af
---
language: en
datasets:
- squad
---
# SqueezeBERT + SQuAD (v1.1)
[squeezebert-uncased](https://huggingface.co/squeezebert/squeezebert-uncased) fine-tuned on [SQUAD v1.1](https://rajpurkar.github.io/SQuAD-explorer/explore/1.1/dev/) for **Q&A** downstream task.
## Details of SqueezeBERT
This model, `squeezebert-uncased`, is a pretrained model for the English language using a masked language modeling (MLM) and Sentence Order Prediction (SOP) objective.
SqueezeBERT was introduced in [this paper](https://arxiv.org/abs/2006.11316). This model is case-insensitive. The model architecture is similar to BERT-base, but with the pointwise fully-connected layers replaced with [grouped convolutions](https://blog.yani.io/filter-group-tutorial/).
The authors found that SqueezeBERT is 4.3x faster than `bert-base-uncased` on a Google Pixel 3 smartphone.
More about the model [here](https://arxiv.org/abs/2004.02984)
## Details of the downstream task (Q&A) - Dataset 📚 🧐 ❓
**S**tanford **Q**uestion **A**nswering **D**ataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.
SQuAD v1.1 contains **100,000+** question-answer pairs on **500+** articles.
## Model training 🏋️‍
The model was trained on a Tesla P100 GPU and 25GB of RAM with the following command:
```bash
python /content/transformers/examples/question-answering/run_squad.py \
--model_type bert \
--model_name_or_path squeezebert/squeezebert-uncased \
--do_eval \
--do_train \
--do_lower_case \
--train_file /content/dataset/train-v1.1.json \
--predict_file /content/dataset/dev-v1.1.json \
--per_gpu_train_batch_size 16 \
--learning_rate 3e-5 \
--num_train_epochs 15 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir /content/output_dir \
--overwrite_output_dir \
--save_steps 2000
```
## Test set Results 🧾
| Metric | # Value |
| ------ | --------- |
| **EM** | **76.66** |
| **F1** | **85.83** |
Model Size: **195 MB**
### Model in action 🚀
Fast usage with **pipelines**:
```python
from transformers import pipeline
QnA_pipeline = pipeline('question-answering', model='mrm8488/squeezebert-finetuned-squadv1')
QnA_pipeline({
'context': 'A new strain of flu that has the potential to become a pandemic has been identified in China by scientists.',
'question': 'Who did identified it ?'
})
# Output: {'answer': 'scientists.', 'end': 106, 'score': 0.6988425850868225, 'start': 96}
```
> Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/)
> Made with <span style="color: #e25555;">&hearts;</span> in Spain