File size: 4,473 Bytes
73180e6
 
 
 
 
7ef22d4
73180e6
 
 
 
 
 
d30d193
73180e6
 
 
 
 
 
d30d193
73180e6
 
 
d30d193
73180e6
 
 
 
7ef22d4
73180e6
c4b1a7a
 
 
73180e6
 
 
 
 
 
 
 
9af29c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73180e6
 
 
9af29c5
73180e6
9af29c5
 
 
 
 
 
73180e6
 
395ae23
 
 
 
73180e6
 
 
 
f21c0d5
73180e6
f21c0d5
73180e6
 
 
 
 
7ef22d4
 
 
 
 
73180e6
 
 
 
 
 
 
7ef22d4
73180e6
7ef22d4
73180e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ef22d4
 
 
 
 
 
 
73180e6
 
 
ec5f509
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
---
tags:
- generated_from_trainer
- code
- coding
- llama
model-index:
- name: FalCoder
  results: []
license: apache-2.0
language:
- code
thumbnail: https://huggingface.co/mrm8488/llama-2-coder-7b/resolve/main/llama2-coder-logo-removebg-preview.png
datasets:
- HuggingFaceH4/CodeAlpaca_20K
pipeline_tag: text-generation
---

<div style="text-align:center;width:250px;height:250px;">
    <img src="https://huggingface.co/mrm8488/llama-2-coder-7b/resolve/main/llama2-coder-logo-removebg-preview.png" alt="llama-2 coder logo"">
</div>


# LlaMa 2 Coder πŸ¦™πŸ‘©β€πŸ’»
**LlaMa-2 7b** fine-tuned on the **CodeAlpaca 20k instructions dataset** by using the method **QLoRA** with [PEFT](https://github.com/huggingface/peft) library.

## Model description 🧠

[Llama-2](https://huggingface.co/meta-llama/Llama-2-7b)

Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters.
Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for dialogue use cases. Llama-2-Chat models outperform open-source chat models on most benchmarks we tested, and in our human evaluations for helpfulness and safety, are on par with some popular closed-source models like ChatGPT and PaLM.


## Training and evaluation data πŸ“š

[CodeAlpaca_20K](https://huggingface.co/datasets/HuggingFaceH4/CodeAlpaca_20K): contains 20K instruction-following data used for fine-tuning the Code Alpaca model.


### Training hyperparameters βš™

```py
    optim="paged_adamw_32bit",
    num_train_epochs = 2,
    eval_steps=50,
    save_steps=50,
    evaluation_strategy="steps",
    save_strategy="steps",
    save_total_limit=2,
    seed=66,
    load_best_model_at_end=True,
    logging_steps=1,
    learning_rate=2e-4,
    fp16=True,
    bf16=False,
    max_grad_norm=0.3,
    warmup_ratio=0.03,
    group_by_length=True,
    lr_scheduler_type="constant"
```

### Training results πŸ—’οΈ


| Step | Training Loss | Validation Loss |
|------|----------|----------|
| 50   | 0.624400 | 0.600070 |
| 100  | 0.634100 | 0.592757 |
| 150  | 0.545800 | 0.586652 |
| 200  | 0.572500 | 0.577525 |
| 250  | 0.528000 | 0.590118 |


### Eval results πŸ“Š

WIP


### Example of usage πŸ‘©β€πŸ’»
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig

model_id = "mrm8488/llama-2-coder-7b"

tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda")

def create_prompt(instruction):
  system = "You are a coding assistant that will help the user to resolve the following instruction:"
  instruction = "### Instruction: " + instruction
  return system + "\n" + instruction + "\n\n" + "### Solution:" + "\n"

def generate(
        instruction,
        max_new_tokens=128,
        temperature=0.1,
        top_p=0.75,
        top_k=40,
        num_beams=4,
        **kwargs,
):
    prompt = create_prompt(instruction)
    print(prompt)
    inputs = tokenizer(prompt, return_tensors="pt")
    input_ids = inputs["input_ids"].to("cuda")
    attention_mask = inputs["attention_mask"].to("cuda")
    generation_config = GenerationConfig(
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        num_beams=num_beams,
        **kwargs,
    )
    with torch.no_grad():
        generation_output = model.generate(
            input_ids=input_ids,
            attention_mask=attention_mask,
            generation_config=generation_config,
            return_dict_in_generate=True,
            output_scores=True,
            max_new_tokens=max_new_tokens,
            early_stopping=True
        )
    s = generation_output.sequences[0]
    output = tokenizer.decode(s)
    return output.split("### Solution:")[1].lstrip("\n")

instruction = """
Edit the following XML code to add a navigation bar to the top of a web page
<html>
<head>
  <title>CliBrAIn</title>
</head>
"""
print(generate(instruction))
```

### Citation

```
@misc {manuel_romero_2023,
	author       = { {Manuel Romero} },
	title        = { llama-2-coder-7b (Revision d30d193) },
	year         = 2023,
	url          = { https://huggingface.co/mrm8488/llama-2-coder-7b },
	doi          = { 10.57967/hf/0931 },
	publisher    = { Hugging Face }
}
```