Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
- code
|
5 |
+
- coding
|
6 |
+
model-index:
|
7 |
+
- name: FalCoder
|
8 |
+
results: []
|
9 |
+
license: apache-2.0
|
10 |
+
language:
|
11 |
+
- code
|
12 |
+
thumbnail: https://huggingface.co/mrm8488/falcoder-7b/resolve/main/falcoder.png
|
13 |
+
datasets:
|
14 |
+
- HuggingFaceH4/CodeAlpaca_20K
|
15 |
+
pipeline_tag: text-generation
|
16 |
+
---
|
17 |
+
|
18 |
+
<div style="text-align:center;width:250px;height:250px;">
|
19 |
+
<img src="https://huggingface.co/mrm8488/falcoder-7b/resolve/main/falcoder.png" alt="falcoder logo"">
|
20 |
+
</div>
|
21 |
+
|
22 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
23 |
+
should probably proofread and complete it, then remove this comment. -->
|
24 |
+
|
25 |
+
# LlaMa 2 Coder๐ฆ๐ฉโ๐ป
|
26 |
+
**LlaMa-2 7b** fine-tuned on the **CodeAlpaca 20k instructions dataset** by using the method **QLoRA** with [PEFT](https://github.com/huggingface/peft) library.
|
27 |
+
|
28 |
+
## Model description ๐ง
|
29 |
+
|
30 |
+
[Llama-2](https://huggingface.co/tiiuae/falcon-7b)
|
31 |
+
|
32 |
+
|
33 |
+
## Training and evaluation data ๐
|
34 |
+
|
35 |
+
[CodeAlpaca_20K](https://huggingface.co/datasets/HuggingFaceH4/CodeAlpaca_20K): contains 20K instruction-following data used for fine-tuning the Code Alpaca model.
|
36 |
+
|
37 |
+
|
38 |
+
### Training hyperparameters โ
|
39 |
+
|
40 |
+
TBA
|
41 |
+
|
42 |
+
### Training results ๐๏ธ
|
43 |
+
|
44 |
+
| Step | Training Loss | Validation Loss |
|
45 |
+
|------|---------------|-----------------|
|
46 |
+
| 100 | 0.798500 | 0.767996 |
|
47 |
+
| 200 | 0.725900 | 0.749880 |
|
48 |
+
| 300 | 0.669100 | 0.748029 |
|
49 |
+
| 400 | 0.687300 | 0.742342 |
|
50 |
+
| 500 | 0.579900 | 0.736735 |
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
### Example of usage ๐ฉโ๐ป
|
55 |
+
```py
|
56 |
+
import torch
|
57 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoTokenizer
|
58 |
+
|
59 |
+
model_id = "mrm8488/falcoder-7b"
|
60 |
+
|
61 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
62 |
+
|
63 |
+
model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda")
|
64 |
+
|
65 |
+
def generate(
|
66 |
+
instruction,
|
67 |
+
max_new_tokens=128,
|
68 |
+
temperature=0.1,
|
69 |
+
top_p=0.75,
|
70 |
+
top_k=40,
|
71 |
+
num_beams=4,
|
72 |
+
**kwargs
|
73 |
+
):
|
74 |
+
prompt = instruction + "\n### Solution:\n"
|
75 |
+
print(prompt)
|
76 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
77 |
+
input_ids = inputs["input_ids"].to("cuda")
|
78 |
+
attention_mask = inputs["attention_mask"].to("cuda")
|
79 |
+
generation_config = GenerationConfig(
|
80 |
+
temperature=temperature,
|
81 |
+
top_p=top_p,
|
82 |
+
top_k=top_k,
|
83 |
+
num_beams=num_beams,
|
84 |
+
**kwargs,
|
85 |
+
)
|
86 |
+
with torch.no_grad():
|
87 |
+
generation_output = model.generate(
|
88 |
+
input_ids=input_ids,
|
89 |
+
attention_mask=attention_mask,
|
90 |
+
generation_config=generation_config,
|
91 |
+
return_dict_in_generate=True,
|
92 |
+
output_scores=True,
|
93 |
+
max_new_tokens=max_new_tokens,
|
94 |
+
early_stopping=True
|
95 |
+
)
|
96 |
+
s = generation_output.sequences[0]
|
97 |
+
output = tokenizer.decode(s)
|
98 |
+
return output.split("### Solution:")[1].lstrip("\n")
|
99 |
+
|
100 |
+
instruction = "Design a class for representing a person in Python."
|
101 |
+
print(generate(instruction))
|
102 |
+
```
|
103 |
+
|
104 |
+
### Citation
|
105 |
+
|