See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: true
base_model: defog/llama-3-sqlcoder-8b
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 4d3ccfd148a48951_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/4d3ccfd148a48951_train_data.json
type:
field_instruction: question
field_output: positive_answer
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 40
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/08668496-5e8f-473f-8969-e5e7f7f05c61
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 100
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 32
mlflow_experiment_name: /tmp/4d3ccfd148a48951_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 40
saves_per_epoch: 0
sequence_len: 512
special_tokens:
pad_token: <|eot_id|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.02
wandb_entity: null
wandb_mode: online
wandb_name: fbae069e-fb6e-483d-98a1-0b88f4497a85
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: fbae069e-fb6e-483d-98a1-0b88f4497a85
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null
08668496-5e8f-473f-8969-e5e7f7f05c61
This model is a fine-tuned version of defog/llama-3-sqlcoder-8b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6502
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 449
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0007 | 1 | 1.2115 |
No log | 0.0278 | 40 | 1.0597 |
No log | 0.0556 | 80 | 0.9304 |
1.0735 | 0.0833 | 120 | 0.8850 |
1.0735 | 0.1111 | 160 | 0.8702 |
0.8708 | 0.1389 | 200 | 0.8522 |
0.8708 | 0.1667 | 240 | 0.8398 |
0.8708 | 0.1944 | 280 | 0.8326 |
0.8352 | 0.2222 | 320 | 0.8218 |
0.8352 | 0.25 | 360 | 0.8126 |
0.8303 | 0.2778 | 400 | 0.8182 |
0.8303 | 0.3056 | 440 | 0.8048 |
0.8303 | 0.3333 | 480 | 0.8074 |
0.831 | 0.3611 | 520 | 0.7934 |
0.831 | 0.3889 | 560 | 0.7838 |
0.7971 | 0.4167 | 600 | 0.7793 |
0.7971 | 0.4444 | 640 | 0.7775 |
0.7971 | 0.4722 | 680 | 0.7648 |
0.7748 | 0.5 | 720 | 0.7571 |
0.7748 | 0.5278 | 760 | 0.7516 |
0.7664 | 0.5556 | 800 | 0.7503 |
0.7664 | 0.5833 | 840 | 0.7475 |
0.7664 | 0.6111 | 880 | 0.7394 |
0.7595 | 0.6389 | 920 | 0.7341 |
0.7595 | 0.6667 | 960 | 0.7318 |
0.7373 | 0.6944 | 1000 | 0.7329 |
0.7373 | 0.7222 | 1040 | 0.7273 |
0.7373 | 0.75 | 1080 | 0.7231 |
0.7192 | 0.7778 | 1120 | 0.7199 |
0.7192 | 0.8056 | 1160 | 0.7076 |
0.727 | 0.8333 | 1200 | 0.7006 |
0.727 | 0.8611 | 1240 | 0.6935 |
0.727 | 0.8889 | 1280 | 0.6962 |
0.7096 | 0.9167 | 1320 | 0.6902 |
0.7096 | 0.9444 | 1360 | 0.6879 |
0.6914 | 0.9722 | 1400 | 0.6850 |
0.6914 | 1.0 | 1440 | 0.6824 |
0.6914 | 1.0278 | 1480 | 0.6757 |
0.6123 | 1.0556 | 1520 | 0.6694 |
0.6123 | 1.0833 | 1560 | 0.6713 |
0.5842 | 1.1111 | 1600 | 0.6688 |
0.5842 | 1.1389 | 1640 | 0.6696 |
0.5842 | 1.1667 | 1680 | 0.6716 |
0.6055 | 1.1944 | 1720 | 0.6644 |
0.6055 | 1.2222 | 1760 | 0.6659 |
0.5986 | 1.25 | 1800 | 0.6627 |
0.5986 | 1.2778 | 1840 | 0.6571 |
0.5986 | 1.3056 | 1880 | 0.6509 |
0.5943 | 1.3333 | 1920 | 0.6492 |
0.5943 | 1.3611 | 1960 | 0.6528 |
0.5999 | 1.3889 | 2000 | 0.6494 |
0.5999 | 1.4167 | 2040 | 0.6502 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for mrferr3t/08668496-5e8f-473f-8969-e5e7f7f05c61
Base model
defog/llama-3-sqlcoder-8b