Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
auto_find_batch_size: true
base_model: defog/llama-3-sqlcoder-8b
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
  - 4d3ccfd148a48951_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/4d3ccfd148a48951_train_data.json
  type:
    field_instruction: question
    field_output: positive_answer
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 40
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/08668496-5e8f-473f-8969-e5e7f7f05c61
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 100
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 32
mlflow_experiment_name: /tmp/4d3ccfd148a48951_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 40
saves_per_epoch: 0
sequence_len: 512
special_tokens:
  pad_token: <|eot_id|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.02
wandb_entity: null
wandb_mode: online
wandb_name: fbae069e-fb6e-483d-98a1-0b88f4497a85
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: fbae069e-fb6e-483d-98a1-0b88f4497a85
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null

08668496-5e8f-473f-8969-e5e7f7f05c61

This model is a fine-tuned version of defog/llama-3-sqlcoder-8b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6502

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 449
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
No log 0.0007 1 1.2115
No log 0.0278 40 1.0597
No log 0.0556 80 0.9304
1.0735 0.0833 120 0.8850
1.0735 0.1111 160 0.8702
0.8708 0.1389 200 0.8522
0.8708 0.1667 240 0.8398
0.8708 0.1944 280 0.8326
0.8352 0.2222 320 0.8218
0.8352 0.25 360 0.8126
0.8303 0.2778 400 0.8182
0.8303 0.3056 440 0.8048
0.8303 0.3333 480 0.8074
0.831 0.3611 520 0.7934
0.831 0.3889 560 0.7838
0.7971 0.4167 600 0.7793
0.7971 0.4444 640 0.7775
0.7971 0.4722 680 0.7648
0.7748 0.5 720 0.7571
0.7748 0.5278 760 0.7516
0.7664 0.5556 800 0.7503
0.7664 0.5833 840 0.7475
0.7664 0.6111 880 0.7394
0.7595 0.6389 920 0.7341
0.7595 0.6667 960 0.7318
0.7373 0.6944 1000 0.7329
0.7373 0.7222 1040 0.7273
0.7373 0.75 1080 0.7231
0.7192 0.7778 1120 0.7199
0.7192 0.8056 1160 0.7076
0.727 0.8333 1200 0.7006
0.727 0.8611 1240 0.6935
0.727 0.8889 1280 0.6962
0.7096 0.9167 1320 0.6902
0.7096 0.9444 1360 0.6879
0.6914 0.9722 1400 0.6850
0.6914 1.0 1440 0.6824
0.6914 1.0278 1480 0.6757
0.6123 1.0556 1520 0.6694
0.6123 1.0833 1560 0.6713
0.5842 1.1111 1600 0.6688
0.5842 1.1389 1640 0.6696
0.5842 1.1667 1680 0.6716
0.6055 1.1944 1720 0.6644
0.6055 1.2222 1760 0.6659
0.5986 1.25 1800 0.6627
0.5986 1.2778 1840 0.6571
0.5986 1.3056 1880 0.6509
0.5943 1.3333 1920 0.6492
0.5943 1.3611 1960 0.6528
0.5999 1.3889 2000 0.6494
0.5999 1.4167 2040 0.6502

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
9
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for mrferr3t/08668496-5e8f-473f-8969-e5e7f7f05c61

Adapter
(279)
this model