Built with Axolotl

See axolotl config

axolotl version: 0.6.0

base_model: mrcuddle/Dark-Hermes3-Llama3.2-3B
dataloader_num_workers: 4
datasets:
- dataset_prepared_path: last_run_prepared
  path: llamafactory/alpaca_en
  type: alpaca
eval_steps: 500
evaluation_strategy: steps
fp16: true
gradient_accumulation_steps: 8
gradient_checkpointing: false
learning_rate: 2e-5
load_in_4bit: false
logging_dir: /content/outputs/logs
logging_steps: 10
lr_scheduler: cosine
lr_scheduler_type: cosine
micro_batch_size: 1
num_train_epochs: 3
optimizer: paged_adamw_8bit
output_dir: /content/outputs
overwrite_output_dir: true
per_device_train_batch_size: 4
save_steps: 500
save_total_limit: 2
use_peft: false
val_set_size: 0.05
warmup_steps: 100

content/outputs

This model is a fine-tuned version of mrcuddle/Dark-Hermes3-Llama3.2-3B on the llamafactory/alpaca_en dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1205

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
No log 0.0002 1 2.4030
1.2572 0.0814 500 1.1935
1.3061 0.1629 1000 1.1865
1.2733 0.2443 1500 1.1864
1.265 0.3258 2000 1.1753
1.2436 0.4072 2500 1.1542
1.2935 0.4887 3000 1.1448
1.2595 0.5701 3500 1.1348
1.2896 0.6515 4000 1.1295
1.2081 0.7330 4500 1.1236
1.2451 0.8144 5000 1.1212
1.2134 0.8959 5500 1.1205
1.2437 0.9773 6000 1.1205

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
79
Safetensors
Model size
3.21B params
Tensor type
F32
·
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mrcuddle/DarkHermes3-Llama3.2-3B-Instruct

Finetuned
(2)
this model
Quantizations
3 models

Dataset used to train mrcuddle/DarkHermes3-Llama3.2-3B-Instruct

Collection including mrcuddle/DarkHermes3-Llama3.2-3B-Instruct