|
--- |
|
license: other |
|
tags: |
|
- vision |
|
- image-segmentation |
|
- generated_from_trainer |
|
model-index: |
|
- name: trashbot |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# trashbot |
|
|
|
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the mraottth/all_locations_pooled dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0191 |
|
- Mean Iou: 0.3997 |
|
- Mean Accuracy: 0.7995 |
|
- Overall Accuracy: 0.7995 |
|
- Accuracy Unlabeled: nan |
|
- Accuracy Trash: 0.7995 |
|
- Iou Unlabeled: 0.0 |
|
- Iou Trash: 0.7995 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 6e-05 |
|
- train_batch_size: 3 |
|
- eval_batch_size: 3 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Trash | Iou Unlabeled | Iou Trash | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------:|:-------------:|:---------:| |
|
| 0.0748 | 1.0 | 90 | 0.0386 | 0.3630 | 0.7259 | 0.7259 | nan | 0.7259 | 0.0 | 0.7259 | |
|
| 0.039 | 2.0 | 180 | 0.0242 | 0.3803 | 0.7607 | 0.7607 | nan | 0.7607 | 0.0 | 0.7607 | |
|
| 0.0194 | 3.0 | 270 | 0.0242 | 0.3605 | 0.7210 | 0.7210 | nan | 0.7210 | 0.0 | 0.7210 | |
|
| 0.0112 | 4.0 | 360 | 0.0205 | 0.3995 | 0.7991 | 0.7991 | nan | 0.7991 | 0.0 | 0.7991 | |
|
| 0.0169 | 5.0 | 450 | 0.0192 | 0.4000 | 0.8000 | 0.8000 | nan | 0.8000 | 0.0 | 0.8000 | |
|
| 0.041 | 6.0 | 540 | 0.0196 | 0.3838 | 0.7677 | 0.7677 | nan | 0.7677 | 0.0 | 0.7677 | |
|
| 0.0188 | 7.0 | 630 | 0.0191 | 0.4139 | 0.8277 | 0.8277 | nan | 0.8277 | 0.0 | 0.8277 | |
|
| 0.0073 | 8.0 | 720 | 0.0190 | 0.4069 | 0.8138 | 0.8138 | nan | 0.8138 | 0.0 | 0.8138 | |
|
| 0.025 | 9.0 | 810 | 0.0191 | 0.4087 | 0.8174 | 0.8174 | nan | 0.8174 | 0.0 | 0.8174 | |
|
| 0.006 | 10.0 | 900 | 0.0191 | 0.3997 | 0.7995 | 0.7995 | nan | 0.7995 | 0.0 | 0.7995 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.13.2 |
|
|