mradermacher's picture
auto-patch README.md
0cdc134 verified
metadata
base_model: jondurbin/bagel-dpo-7b-v0.4
datasets:
  - ai2_arc
  - allenai/ultrafeedback_binarized_cleaned
  - argilla/distilabel-intel-orca-dpo-pairs
  - jondurbin/airoboros-3.2
  - codeparrot/apps
  - facebook/belebele
  - bluemoon-fandom-1-1-rp-cleaned
  - boolq
  - camel-ai/biology
  - camel-ai/chemistry
  - camel-ai/math
  - camel-ai/physics
  - jondurbin/contextual-dpo-v0.1
  - jondurbin/gutenberg-dpo-v0.1
  - jondurbin/py-dpo-v0.1
  - jondurbin/truthy-dpo-v0.1
  - LDJnr/Capybara
  - jondurbin/cinematika-v0.1
  - WizardLM/WizardLM_evol_instruct_70k
  - glaiveai/glaive-function-calling-v2
  - jondurbin/gutenberg-dpo-v0.1
  - grimulkan/LimaRP-augmented
  - lmsys/lmsys-chat-1m
  - ParisNeo/lollms_aware_dataset
  - TIGER-Lab/MathInstruct
  - Muennighoff/natural-instructions
  - openbookqa
  - kingbri/PIPPA-shareGPT
  - piqa
  - Vezora/Tested-22k-Python-Alpaca
  - ropes
  - cakiki/rosetta-code
  - Open-Orca/SlimOrca
  - b-mc2/sql-create-context
  - squad_v2
  - mattpscott/airoboros-summarization
  - migtissera/Synthia-v1.3
  - unalignment/toxic-dpo-v0.2
  - WhiteRabbitNeo/WRN-Chapter-1
  - WhiteRabbitNeo/WRN-Chapter-2
  - winogrande
language:
  - en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher

About

weighted/imatrix quants of https://huggingface.co/jondurbin/bagel-dpo-7b-v0.4

static quants are available at https://huggingface.co/mradermacher/bagel-dpo-7b-v0.4-GGUF

Usage

If you are unsure how to use GGUF files, refer to one of TheBloke's READMEs for more details, including on how to concatenate multi-part files.

Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

Link Type Size/GB Notes
GGUF i1-IQ1_S 1.7 for the desperate
GGUF i1-IQ1_M 1.9 mostly desperate
GGUF i1-IQ2_XXS 2.1
GGUF i1-IQ2_XS 2.3
GGUF i1-IQ2_S 2.4
GGUF i1-IQ2_M 2.6
GGUF i1-Q2_K 2.8 IQ3_XXS probably better
GGUF i1-IQ3_XXS 2.9 lower quality
GGUF i1-IQ3_XS 3.1
GGUF i1-Q3_K_S 3.3 IQ3_XS probably better
GGUF i1-IQ3_S 3.3 beats Q3_K*
GGUF i1-IQ3_M 3.4
GGUF i1-Q3_K_M 3.6 IQ3_S probably better
GGUF i1-Q3_K_L 3.9 IQ3_M probably better
GGUF i1-IQ4_XS 4.0
GGUF i1-Q4_0_4_4 4.2 fast on arm, low quality
GGUF i1-Q4_0_4_8 4.2 fast on arm+i8mm, low quality
GGUF i1-Q4_0_8_8 4.2 fast on arm+sve, low quality
GGUF i1-Q4_0 4.2 fast, low quality
GGUF i1-Q4_K_S 4.2 optimal size/speed/quality
GGUF i1-Q4_K_M 4.5 fast, recommended
GGUF i1-Q5_K_S 5.1
GGUF i1-Q5_K_M 5.2
GGUF i1-Q6_K 6.0 practically like static Q6_K

Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):

image.png

And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized.

Thanks

I thank my company, nethype GmbH, for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to @nicoboss for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.