mradermacher's picture
auto-patch README.md
b16f28b verified
|
raw
history blame
4.26 kB
---
base_model: jondurbin/bagel-dpo-7b-v0.4
datasets:
- ai2_arc
- allenai/ultrafeedback_binarized_cleaned
- argilla/distilabel-intel-orca-dpo-pairs
- jondurbin/airoboros-3.2
- codeparrot/apps
- facebook/belebele
- bluemoon-fandom-1-1-rp-cleaned
- boolq
- camel-ai/biology
- camel-ai/chemistry
- camel-ai/math
- camel-ai/physics
- jondurbin/contextual-dpo-v0.1
- jondurbin/gutenberg-dpo-v0.1
- jondurbin/py-dpo-v0.1
- jondurbin/truthy-dpo-v0.1
- LDJnr/Capybara
- jondurbin/cinematika-v0.1
- WizardLM/WizardLM_evol_instruct_70k
- glaiveai/glaive-function-calling-v2
- jondurbin/gutenberg-dpo-v0.1
- grimulkan/LimaRP-augmented
- lmsys/lmsys-chat-1m
- ParisNeo/lollms_aware_dataset
- TIGER-Lab/MathInstruct
- Muennighoff/natural-instructions
- openbookqa
- kingbri/PIPPA-shareGPT
- piqa
- Vezora/Tested-22k-Python-Alpaca
- ropes
- cakiki/rosetta-code
- Open-Orca/SlimOrca
- b-mc2/sql-create-context
- squad_v2
- mattpscott/airoboros-summarization
- migtissera/Synthia-v1.3
- unalignment/toxic-dpo-v0.2
- WhiteRabbitNeo/WRN-Chapter-1
- WhiteRabbitNeo/WRN-Chapter-2
- winogrande
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/jondurbin/bagel-dpo-7b-v0.4
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/bagel-dpo-7b-v0.4-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-7b-v0.4-GGUF/resolve/main/bagel-dpo-7b-v0.4.Q2_K.gguf) | Q2_K | 2.8 | |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-7b-v0.4-GGUF/resolve/main/bagel-dpo-7b-v0.4.Q3_K_S.gguf) | Q3_K_S | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-7b-v0.4-GGUF/resolve/main/bagel-dpo-7b-v0.4.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-7b-v0.4-GGUF/resolve/main/bagel-dpo-7b-v0.4.Q3_K_L.gguf) | Q3_K_L | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-7b-v0.4-GGUF/resolve/main/bagel-dpo-7b-v0.4.IQ4_XS.gguf) | IQ4_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-7b-v0.4-GGUF/resolve/main/bagel-dpo-7b-v0.4.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-7b-v0.4-GGUF/resolve/main/bagel-dpo-7b-v0.4.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-7b-v0.4-GGUF/resolve/main/bagel-dpo-7b-v0.4.Q5_K_S.gguf) | Q5_K_S | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-7b-v0.4-GGUF/resolve/main/bagel-dpo-7b-v0.4.Q5_K_M.gguf) | Q5_K_M | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-7b-v0.4-GGUF/resolve/main/bagel-dpo-7b-v0.4.Q6_K.gguf) | Q6_K | 6.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-7b-v0.4-GGUF/resolve/main/bagel-dpo-7b-v0.4.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/bagel-dpo-7b-v0.4-GGUF/resolve/main/bagel-dpo-7b-v0.4.f16.gguf) | f16 | 14.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->