base_model: mpasila/Viking-SlimInstruct-V1-7B
datasets:
- mpasila/Viking-Instruct-Mix
- saillab/alpaca-icelandic-cleaned
- kobprof/skolegpt-instruct
- tollefj/nor-instruct-cleaned
- skvarre/sv-instruct-v1
- Gryphe/Sonnet3.5-SlimOrcaDedupCleaned-20k
- LumiOpen/instruction-collection-fin
- neph1/Alpaca-Lora-GPT4-Swedish-Refined
language:
- en
- fi
- 'no'
- nb
- da
- sv
- is
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- unsloth
- trl
- sft
About
static quants of https://huggingface.co/mpasila/Viking-SlimInstruct-V1-7B
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Viking-SlimInstruct-V1-7B-i1-GGUF
Usage
If you are unsure how to use GGUF files, refer to one of TheBloke's READMEs for more details, including on how to concatenate multi-part files.
Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
Link | Type | Size/GB | Notes |
---|---|---|---|
GGUF | Q2_K | 3.1 | |
GGUF | Q3_K_S | 3.6 | |
GGUF | Q3_K_M | 3.9 | lower quality |
GGUF | Q3_K_L | 4.2 | |
GGUF | IQ4_XS | 4.3 | |
GGUF | Q4_K_S | 4.5 | fast, recommended |
GGUF | Q4_K_M | 4.7 | fast, recommended |
GGUF | Q5_K_S | 5.4 | |
GGUF | Q5_K_M | 5.5 | |
GGUF | Q6_K | 6.3 | very good quality |
GGUF | Q8_0 | 8.1 | fast, best quality |
GGUF | f16 | 15.2 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):
And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized.
Thanks
I thank my company, nethype GmbH, for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.