mradermacher's picture
auto-patch README.md
b56cb36 verified
|
raw
history blame
5.52 kB
---
base_model: Qwen/Qwen2.5-Coder-32B-Instruct
language:
- en
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct/blob/main/LICENSE
quantized_by: mradermacher
tags:
- code
- codeqwen
- chat
- qwen
- qwen-coder
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/Qwen2.5-Coder-32B-Instruct-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-32B-Instruct-i1-GGUF/resolve/main/Qwen2.5-Coder-32B-Instruct.i1-IQ1_S.gguf) | i1-IQ1_S | 7.4 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-32B-Instruct-i1-GGUF/resolve/main/Qwen2.5-Coder-32B-Instruct.i1-IQ1_M.gguf) | i1-IQ1_M | 8.0 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-32B-Instruct-i1-GGUF/resolve/main/Qwen2.5-Coder-32B-Instruct.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 9.1 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-32B-Instruct-i1-GGUF/resolve/main/Qwen2.5-Coder-32B-Instruct.i1-IQ2_XS.gguf) | i1-IQ2_XS | 10.1 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-32B-Instruct-i1-GGUF/resolve/main/Qwen2.5-Coder-32B-Instruct.i1-IQ2_S.gguf) | i1-IQ2_S | 10.5 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-32B-Instruct-i1-GGUF/resolve/main/Qwen2.5-Coder-32B-Instruct.i1-IQ2_M.gguf) | i1-IQ2_M | 11.4 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-32B-Instruct-i1-GGUF/resolve/main/Qwen2.5-Coder-32B-Instruct.i1-Q2_K.gguf) | i1-Q2_K | 12.4 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-32B-Instruct-i1-GGUF/resolve/main/Qwen2.5-Coder-32B-Instruct.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 12.9 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-32B-Instruct-i1-GGUF/resolve/main/Qwen2.5-Coder-32B-Instruct.i1-IQ3_XS.gguf) | i1-IQ3_XS | 13.8 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-32B-Instruct-i1-GGUF/resolve/main/Qwen2.5-Coder-32B-Instruct.i1-Q3_K_S.gguf) | i1-Q3_K_S | 14.5 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-32B-Instruct-i1-GGUF/resolve/main/Qwen2.5-Coder-32B-Instruct.i1-IQ3_S.gguf) | i1-IQ3_S | 14.5 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-32B-Instruct-i1-GGUF/resolve/main/Qwen2.5-Coder-32B-Instruct.i1-IQ3_M.gguf) | i1-IQ3_M | 14.9 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-32B-Instruct-i1-GGUF/resolve/main/Qwen2.5-Coder-32B-Instruct.i1-Q3_K_M.gguf) | i1-Q3_K_M | 16.0 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-32B-Instruct-i1-GGUF/resolve/main/Qwen2.5-Coder-32B-Instruct.i1-Q3_K_L.gguf) | i1-Q3_K_L | 17.3 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-32B-Instruct-i1-GGUF/resolve/main/Qwen2.5-Coder-32B-Instruct.i1-IQ4_XS.gguf) | i1-IQ4_XS | 17.8 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-32B-Instruct-i1-GGUF/resolve/main/Qwen2.5-Coder-32B-Instruct.i1-Q4_0.gguf) | i1-Q4_0 | 18.8 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-32B-Instruct-i1-GGUF/resolve/main/Qwen2.5-Coder-32B-Instruct.i1-Q4_K_S.gguf) | i1-Q4_K_S | 18.9 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-32B-Instruct-i1-GGUF/resolve/main/Qwen2.5-Coder-32B-Instruct.i1-Q4_K_M.gguf) | i1-Q4_K_M | 20.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-32B-Instruct-i1-GGUF/resolve/main/Qwen2.5-Coder-32B-Instruct.i1-Q5_K_S.gguf) | i1-Q5_K_S | 22.7 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-32B-Instruct-i1-GGUF/resolve/main/Qwen2.5-Coder-32B-Instruct.i1-Q5_K_M.gguf) | i1-Q5_K_M | 23.4 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-32B-Instruct-i1-GGUF/resolve/main/Qwen2.5-Coder-32B-Instruct.i1-Q6_K.gguf) | i1-Q6_K | 27.0 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->