Transformers
GGUF
English
Inference Endpoints
Nu-17b-GGUF / README.md
mradermacher's picture
auto-patch README.md
2e34d21 verified
|
raw
history blame
2.81 kB
---
datasets:
- athirdpath/DPO_Pairs-Roleplay-Alpaca-NSFW
- athirdpath/alpaca_dpo_pairs
language:
- en
library_name: transformers
license: cc-by-nc-4.0
quantized_by: mradermacher
---
## About
static quants of https://huggingface.co/athirdpath/Nu-17b
<!-- provided-files -->
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Nu-17b-GGUF/resolve/main/Nu-17b.Q2_K.gguf) | Q2_K | 6.5 | |
| [GGUF](https://huggingface.co/mradermacher/Nu-17b-GGUF/resolve/main/Nu-17b.IQ3_XS.gguf) | IQ3_XS | 7.2 | |
| [GGUF](https://huggingface.co/mradermacher/Nu-17b-GGUF/resolve/main/Nu-17b.Q3_K_S.gguf) | Q3_K_S | 7.5 | |
| [GGUF](https://huggingface.co/mradermacher/Nu-17b-GGUF/resolve/main/Nu-17b.IQ3_S.gguf) | IQ3_S | 7.6 | fast, beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Nu-17b-GGUF/resolve/main/Nu-17b.IQ3_M.gguf) | IQ3_M | 7.8 | |
| [GGUF](https://huggingface.co/mradermacher/Nu-17b-GGUF/resolve/main/Nu-17b.Q3_K_M.gguf) | Q3_K_M | 8.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Nu-17b-GGUF/resolve/main/Nu-17b.Q3_K_L.gguf) | Q3_K_L | 9.1 | |
| [GGUF](https://huggingface.co/mradermacher/Nu-17b-GGUF/resolve/main/Nu-17b.IQ4_XS.gguf) | IQ4_XS | 9.4 | |
| [GGUF](https://huggingface.co/mradermacher/Nu-17b-GGUF/resolve/main/Nu-17b.Q4_K_S.gguf) | Q4_K_S | 9.8 | fast, medium quality |
| [GGUF](https://huggingface.co/mradermacher/Nu-17b-GGUF/resolve/main/Nu-17b.Q4_K_M.gguf) | Q4_K_M | 10.4 | fast, medium quality |
| [GGUF](https://huggingface.co/mradermacher/Nu-17b-GGUF/resolve/main/Nu-17b.Q5_K_S.gguf) | Q5_K_S | 11.9 | |
| [GGUF](https://huggingface.co/mradermacher/Nu-17b-GGUF/resolve/main/Nu-17b.Q5_K_M.gguf) | Q5_K_M | 12.2 | |
| [GGUF](https://huggingface.co/mradermacher/Nu-17b-GGUF/resolve/main/Nu-17b.Q6_K.gguf) | Q6_K | 14.1 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Nu-17b-GGUF/resolve/main/Nu-17b.Q8_0.gguf) | Q8_0 | 18.1 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->