mradermacher's picture
auto-patch README.md
9c52a7a verified
metadata
base_model: shenzhi-wang/Gemma-2-27B-Chinese-Chat
language:
  - en
  - zh
library_name: transformers
license: gemma
quantized_by: mradermacher
tags:
  - llama-factory
  - orpo

About

static quants of https://huggingface.co/shenzhi-wang/Gemma-2-27B-Chinese-Chat

weighted/imatrix quants are available at https://huggingface.co/mradermacher/Gemma-2-27B-Chinese-Chat-i1-GGUF

Usage

If you are unsure how to use GGUF files, refer to one of TheBloke's READMEs for more details, including on how to concatenate multi-part files.

Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

Link Type Size/GB Notes
GGUF Q2_K 10.5
GGUF IQ3_XS 11.7
GGUF IQ3_S 12.3 beats Q3_K*
GGUF Q3_K_S 12.3
GGUF IQ3_M 12.6
GGUF Q3_K_M 13.5 lower quality
GGUF Q3_K_L 14.6
GGUF IQ4_XS 15.0
GGUF Q4_K_S 15.8 fast, recommended
GGUF Q4_K_M 16.7 fast, recommended
GGUF Q5_K_S 19.0
GGUF Q5_K_M 19.5
GGUF Q6_K 22.4 very good quality
GGUF Q8_0 29.0 fast, best quality

Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):

image.png

And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized.

Thanks

I thank my company, nethype GmbH, for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.