base_model: cognitivecomputations/Dolphin3.0-Llama3.1-8B
datasets:
- OpenCoder-LLM/opc-sft-stage1
- OpenCoder-LLM/opc-sft-stage2
- microsoft/orca-agentinstruct-1M-v1
- microsoft/orca-math-word-problems-200k
- NousResearch/hermes-function-calling-v1
- AI-MO/NuminaMath-CoT
- AI-MO/NuminaMath-TIR
- allenai/tulu-3-sft-mixture
- cognitivecomputations/dolphin-coder
- HuggingFaceTB/smoltalk
- cognitivecomputations/samantha-data
- m-a-p/CodeFeedback-Filtered-Instruction
- m-a-p/Code-Feedback
language:
- en
library_name: transformers
license: llama3.1
quantized_by: mradermacher
About
static quants of https://huggingface.co/cognitivecomputations/Dolphin3.0-Llama3.1-8B
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Dolphin3.0-Llama3.1-8B-i1-GGUF
Usage
If you are unsure how to use GGUF files, refer to one of TheBloke's READMEs for more details, including on how to concatenate multi-part files.
Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
Link | Type | Size/GB | Notes |
---|---|---|---|
GGUF | Q2_K | 3.3 | |
GGUF | Q3_K_S | 3.8 | |
GGUF | Q3_K_M | 4.1 | lower quality |
GGUF | Q3_K_L | 4.4 | |
GGUF | IQ4_XS | 4.6 | |
GGUF | Q4_K_S | 4.8 | fast, recommended |
GGUF | Q4_K_M | 5.0 | fast, recommended |
GGUF | Q5_K_S | 5.7 | |
GGUF | Q5_K_M | 5.8 | |
GGUF | Q6_K | 6.7 | very good quality |
GGUF | Q8_0 | 8.6 | fast, best quality |
GGUF | f16 | 16.2 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):
And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized.
Thanks
I thank my company, nethype GmbH, for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.