metadata
base_model: nvidia/segformer-b1-finetuned-ade-512-512
license: other
metrics:
- precision
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b1-finetuned-segments-pv_v1_normalized_t4_16batch
results: []
segformer-b1-finetuned-segments-pv_v1_normalized_t4_16batch
This model is a fine-tuned version of nvidia/segformer-b1-finetuned-ade-512-512 on the mouadenna/satellite_PV_dataset_train_test_v1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0082
- Mean Iou: 0.8638
- Precision: 0.9180
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0016
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Precision |
---|---|---|---|---|---|
0.0089 | 0.9739 | 28 | 0.0081 | 0.7635 | 0.8665 |
0.0087 | 1.9826 | 57 | 0.0098 | 0.7340 | 0.7592 |
0.0053 | 2.9913 | 86 | 0.0056 | 0.8284 | 0.9168 |
0.0073 | 4.0 | 115 | 0.0069 | 0.7988 | 0.8608 |
0.005 | 4.9739 | 143 | 0.0059 | 0.8186 | 0.8704 |
0.0042 | 5.9826 | 172 | 0.0059 | 0.8262 | 0.8836 |
0.0047 | 6.9913 | 201 | 0.0058 | 0.8225 | 0.8749 |
0.0044 | 8.0 | 230 | 0.0060 | 0.8168 | 0.8677 |
0.0041 | 8.9739 | 258 | 0.0070 | 0.8057 | 0.8494 |
0.0031 | 9.9826 | 287 | 0.0057 | 0.8260 | 0.8832 |
0.0057 | 10.9913 | 316 | 0.0058 | 0.8289 | 0.8744 |
0.0039 | 12.0 | 345 | 0.0065 | 0.8190 | 0.8625 |
0.0033 | 12.9739 | 373 | 0.0061 | 0.8316 | 0.9113 |
0.0031 | 13.9826 | 402 | 0.0066 | 0.8329 | 0.8947 |
0.0036 | 14.9913 | 431 | 0.0059 | 0.8392 | 0.8996 |
0.0034 | 16.0 | 460 | 0.0060 | 0.8379 | 0.8977 |
0.004 | 16.9739 | 488 | 0.0064 | 0.8434 | 0.9075 |
0.0029 | 17.9826 | 517 | 0.0060 | 0.8450 | 0.9010 |
0.0027 | 18.9913 | 546 | 0.0059 | 0.8431 | 0.9038 |
0.0035 | 20.0 | 575 | 0.0060 | 0.8445 | 0.9049 |
0.0028 | 20.9739 | 603 | 0.0062 | 0.8474 | 0.9320 |
0.0024 | 21.9826 | 632 | 0.0063 | 0.8442 | 0.8984 |
0.0021 | 22.9913 | 661 | 0.0059 | 0.8526 | 0.9030 |
0.0021 | 24.0 | 690 | 0.0059 | 0.8546 | 0.9126 |
0.0026 | 24.9739 | 718 | 0.0065 | 0.8542 | 0.9110 |
0.0024 | 25.9826 | 747 | 0.0068 | 0.8451 | 0.8921 |
0.0019 | 26.9913 | 776 | 0.0069 | 0.8462 | 0.9029 |
0.002 | 28.0 | 805 | 0.0071 | 0.8522 | 0.9145 |
0.0022 | 28.9739 | 833 | 0.0077 | 0.8395 | 0.9304 |
0.0019 | 29.9826 | 862 | 0.0069 | 0.8567 | 0.9167 |
0.0027 | 30.9913 | 891 | 0.0073 | 0.8478 | 0.8957 |
0.0026 | 32.0 | 920 | 0.0069 | 0.8575 | 0.8994 |
0.0017 | 32.9739 | 948 | 0.0065 | 0.8602 | 0.9098 |
0.0023 | 33.9826 | 977 | 0.0071 | 0.8517 | 0.8915 |
0.0019 | 34.9913 | 1006 | 0.0069 | 0.8629 | 0.9200 |
0.0016 | 36.0 | 1035 | 0.0064 | 0.8684 | 0.9213 |
0.0017 | 36.9739 | 1063 | 0.0068 | 0.8612 | 0.9147 |
0.002 | 37.9826 | 1092 | 0.0074 | 0.8608 | 0.9295 |
0.0014 | 38.9913 | 1121 | 0.0069 | 0.8660 | 0.9222 |
0.0014 | 40.0 | 1150 | 0.0075 | 0.8624 | 0.9173 |
0.0013 | 40.9739 | 1178 | 0.0076 | 0.8560 | 0.9105 |
0.0013 | 41.9826 | 1207 | 0.0076 | 0.8640 | 0.9193 |
0.0013 | 42.9913 | 1236 | 0.0076 | 0.8625 | 0.9078 |
0.0012 | 44.0 | 1265 | 0.0078 | 0.8647 | 0.9152 |
0.0013 | 44.9739 | 1293 | 0.0078 | 0.8652 | 0.9176 |
0.0012 | 45.9826 | 1322 | 0.0078 | 0.8638 | 0.9209 |
0.0012 | 46.9913 | 1351 | 0.0081 | 0.8639 | 0.9186 |
0.001 | 48.0 | 1380 | 0.0079 | 0.8641 | 0.9181 |
0.0011 | 48.6957 | 1400 | 0.0082 | 0.8638 | 0.9180 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1