Edit model card

plt5-seq-clf-with-entities-updated-finetuned

This model is a fine-tuned version of allegro/plt5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9863
  • Accuracy: {'accuracy': 0.6016129032258064}
  • Recall: {'recall': 0.6016129032258064}
  • F1: {'f1': 0.6090459454706235}
  • Precision: {'precision': 0.6487538544674235}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Recall F1 Precision
1.7248 1.0 718 1.6722 {'accuracy': 0.47258064516129034} {'recall': 0.47258064516129034} {'f1': 0.30332120269936047} {'precision': 0.2233324661810614}
1.6984 2.0 1436 1.6216 {'accuracy': 0.47258064516129034} {'recall': 0.47258064516129034} {'f1': 0.30332120269936047} {'precision': 0.2233324661810614}
1.6839 3.0 2154 1.6344 {'accuracy': 0.47258064516129034} {'recall': 0.47258064516129034} {'f1': 0.30332120269936047} {'precision': 0.2233324661810614}
1.6882 4.0 2872 1.6261 {'accuracy': 0.47258064516129034} {'recall': 0.47258064516129034} {'f1': 0.30332120269936047} {'precision': 0.2233324661810614}
1.68 5.0 3590 1.6223 {'accuracy': 0.47258064516129034} {'recall': 0.47258064516129034} {'f1': 0.30332120269936047} {'precision': 0.2233324661810614}
1.6777 6.0 4308 1.6521 {'accuracy': 0.4854838709677419} {'recall': 0.4854838709677419} {'f1': 0.36285141031634727} {'precision': 0.30095036265938396}
1.6681 7.0 5026 1.6165 {'accuracy': 0.47096774193548385} {'recall': 0.47096774193548385} {'f1': 0.3142909197822259} {'precision': 0.27758817356390014}
1.6585 8.0 5744 1.5583 {'accuracy': 0.47580645161290325} {'recall': 0.47580645161290325} {'f1': 0.3179514906044033} {'precision': 0.274054689168981}
1.6399 9.0 6462 1.6084 {'accuracy': 0.3564516129032258} {'recall': 0.3564516129032258} {'f1': 0.30977675417942074} {'precision': 0.3086887092441926}
1.6158 10.0 7180 1.6613 {'accuracy': 0.3225806451612903} {'recall': 0.3225806451612903} {'f1': 0.2777093706693196} {'precision': 0.5070305497722745}
1.5835 11.0 7898 1.6525 {'accuracy': 0.3370967741935484} {'recall': 0.3370967741935484} {'f1': 0.2946753320835634} {'precision': 0.4987499213117131}
1.5443 12.0 8616 1.5433 {'accuracy': 0.39838709677419354} {'recall': 0.39838709677419354} {'f1': 0.37257538542456536} {'precision': 0.5472359482869795}
1.4792 13.0 9334 1.4685 {'accuracy': 0.4290322580645161} {'recall': 0.4290322580645161} {'f1': 0.3843028777529311} {'precision': 0.5497170294652844}
1.419 14.0 10052 1.5534 {'accuracy': 0.4032258064516129} {'recall': 0.4032258064516129} {'f1': 0.35189485350144095} {'precision': 0.5701307405449848}
1.3881 15.0 10770 1.3641 {'accuracy': 0.4790322580645161} {'recall': 0.4790322580645161} {'f1': 0.4461803399889066} {'precision': 0.5258731490942117}
1.3582 16.0 11488 1.3837 {'accuracy': 0.43870967741935485} {'recall': 0.43870967741935485} {'f1': 0.3975785817347331} {'precision': 0.5481481481481482}
1.3074 17.0 12206 1.2409 {'accuracy': 0.5177419354838709} {'recall': 0.5177419354838709} {'f1': 0.49737440159156987} {'precision': 0.5439755251062998}
1.2529 18.0 12924 1.2490 {'accuracy': 0.5241935483870968} {'recall': 0.5241935483870968} {'f1': 0.5075488601971412} {'precision': 0.5801964826379877}
1.2223 19.0 13642 1.1680 {'accuracy': 0.5435483870967742} {'recall': 0.5435483870967742} {'f1': 0.5172098120467532} {'precision': 0.5483692723442298}
1.1881 20.0 14360 1.1325 {'accuracy': 0.5467741935483871} {'recall': 0.5467741935483871} {'f1': 0.528976565119481} {'precision': 0.5918362760770626}
1.1524 21.0 15078 1.1075 {'accuracy': 0.5338709677419354} {'recall': 0.5338709677419354} {'f1': 0.5363641334830415} {'precision': 0.6113524377471905}
1.1307 22.0 15796 1.0685 {'accuracy': 0.5612903225806452} {'recall': 0.5612903225806452} {'f1': 0.567131293394492} {'precision': 0.6230821316117012}
1.1198 23.0 16514 1.0978 {'accuracy': 0.5564516129032258} {'recall': 0.5564516129032258} {'f1': 0.5596055517552543} {'precision': 0.6285694241881432}
1.0856 24.0 17232 1.0779 {'accuracy': 0.5532258064516129} {'recall': 0.5532258064516129} {'f1': 0.5591833153283243} {'precision': 0.6338935526492327}
1.0829 25.0 17950 1.0175 {'accuracy': 0.5903225806451613} {'recall': 0.5903225806451613} {'f1': 0.5964860501094582} {'precision': 0.6422535611112073}
1.0613 26.0 18668 1.0426 {'accuracy': 0.567741935483871} {'recall': 0.567741935483871} {'f1': 0.5748961882147833} {'precision': 0.6378855920377489}
1.0363 27.0 19386 0.9920 {'accuracy': 0.5935483870967742} {'recall': 0.5935483870967742} {'f1': 0.6001368374403852} {'precision': 0.6385480642288512}
1.0412 28.0 20104 1.0210 {'accuracy': 0.5758064516129032} {'recall': 0.5758064516129032} {'f1': 0.5836230006413563} {'precision': 0.6487093843541626}
1.0256 29.0 20822 0.9992 {'accuracy': 0.5870967741935483} {'recall': 0.5870967741935483} {'f1': 0.5944960724933464} {'precision': 0.6439234847872369}
1.0354 30.0 21540 0.9863 {'accuracy': 0.6016129032258064} {'recall': 0.6016129032258064} {'f1': 0.6090459454706235} {'precision': 0.6487538544674235}

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for moska/plt5-seq-clf-with-entities-updated-finetuned

Base model

allegro/plt5-small
Finetuned
(2)
this model