|
--- |
|
language: |
|
- en |
|
license: mit |
|
model-index: |
|
- name: MoMo-70B-lora-1.8.6-DPO |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 70.14 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-70B-lora-1.8.6-DPO |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 86.03 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-70B-lora-1.8.6-DPO |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 77.4 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-70B-lora-1.8.6-DPO |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 69.0 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-70B-lora-1.8.6-DPO |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 84.37 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-70B-lora-1.8.6-DPO |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 76.8 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-70B-lora-1.8.6-DPO |
|
name: Open LLM Leaderboard |
|
--- |
|
# **Introduction** |
|
MoMo-72B-lora-1.8.6-DPO is trained via Direct Preference Optimization([DPO](https://arxiv.org/abs/2305.18290)) from [MoMo-72B-LoRA-V1.4](https://huggingface.co/moreh/MoMo-72B-LoRA-V1.4) as its base model, with several optimizations in hyperparameters. |
|
[MoMo-72B-LoRA-V1.4](https://huggingface.co/moreh/MoMo-72B-LoRA-V1.4) is trained via Supervised Fine-Tuning (SFT) using [LoRA](https://arxiv.org/abs/2106.09685), with the QWEN-72B model as its base-model. |
|
Note that we did not exploit any form of weight merge. |
|
For leaderboard submission, the trained weight is realigned for compatibility with llama. |
|
MoMo-72B is trained using **[Moreh](https://moreh.io/)**'s [MoAI platform](https://moreh.io/product), which simplifies the training of large-scale models, and AMD's MI250 GPU. |
|
|
|
|
|
## Details |
|
### Used Librarys |
|
- torch |
|
- peft |
|
### Used Datasets |
|
- [slimorca](Open-Orca/SlimOrca) |
|
- [truthy](https://huggingface.co/datasets/jondurbin/truthy-dpo-v0.1) |
|
- [orca_dpo_pairs](https://huggingface.co/datasets/Intel/orca_dpo_pairs) |
|
- No other dataset was used |
|
- No benchmark test set or the training set are used |
|
- [data contamination check](https://github.com/swj0419/detect-pretrain-code-contamination) result |
|
|
|
| Model | ARC | MMLU | TruthfulQA | GSM8K | |
|
|------------------------------|-------|-------|-------|-------| |
|
| **V1.8.6(result < 0.1, %)**| TBU |TBU | 0.73 | TBU | |
|
### Used Environments |
|
- AMD MI250 & MoAI platform |
|
- Please visit https://moreh.io/product for more information about MoAI platform |
|
- Or, contact us directly [[email protected]](mailto:[email protected]) |
|
|
|
## How to use |
|
|
|
```python |
|
# pip install transformers==4.35.2 |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("moreh/MoMo-72B-lora-1.8.6-DPO") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"moreh/MoMo-72B-lora-1.8.6-DPO" |
|
) |
|
``` |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_moreh__MoMo-70B-lora-1.8.6-DPO) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |77.29| |
|
|AI2 Reasoning Challenge (25-Shot)|70.14| |
|
|HellaSwag (10-Shot) |86.03| |
|
|MMLU (5-Shot) |77.40| |
|
|TruthfulQA (0-shot) |69.00| |
|
|Winogrande (5-shot) |84.37| |
|
|GSM8k (5-shot) |76.80| |
|
|
|
|