smollm2-17b-dpo-cai-v1

This model is a fine-tuned version of moodlep/smollm2-1.7b-instr-sft-cai on the HuggingFaceH4/ultrafeedback_binarized and the HuggingFaceH4/cai-conversation-harmless datasets. It achieves the following results on the evaluation set:

  • Loss: 0.6931
  • Rewards/chosen: 0.0000
  • Rewards/rejected: -0.0001
  • Rewards/accuracies: 0.4339
  • Rewards/margins: 0.0002
  • Logps/rejected: -228.5849
  • Logps/chosen: -245.0489
  • Logits/rejected: -1.4322
  • Logits/chosen: -1.3905

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6933 0.3883 100 0.6930 -0.0013 -0.0015 0.4358 0.0002 -228.7255 -245.1841 -1.6940 -1.6433
0.6931 0.7767 200 0.6929 -0.0007 -0.0011 0.4487 0.0004 -228.6854 -245.1230 -1.2768 -1.2404

Framework versions

  • PEFT 0.14.0
  • Transformers 4.45.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.20.3
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for moodlep/smollm2-17b-dpo-cai-v1

Adapter
(5)
this model

Datasets used to train moodlep/smollm2-17b-dpo-cai-v1