moock's picture
End of training
b06d7d6
|
raw
history blame
2.47 kB
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swinv2-tiny-patch4-window8-256-finetuned-gardner-exp-max
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7953020134228188

swinv2-tiny-patch4-window8-256-finetuned-gardner-exp-max

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5942
  • Accuracy: 0.7953

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6004 0.97 14 1.4012 0.5463
1.4099 2.0 29 1.0249 0.5463
1.1043 2.97 43 0.9695 0.6732
1.0028 4.0 58 0.8659 0.6585
0.8915 4.97 72 0.7728 0.7317
0.8824 6.0 87 0.7238 0.7220
0.8286 6.97 101 0.7220 0.7220
0.8274 8.0 116 0.7376 0.6976
0.7765 8.97 130 0.7117 0.7366
0.7633 9.66 140 0.7079 0.7366

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2
  • Datasets 2.16.0
  • Tokenizers 0.15.0