PEFT
gpt
code
instruct
WizardLM
Zangs3011 commited on
Commit
8e6c22f
·
1 Parent(s): 742311f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -3
README.md CHANGED
@@ -1,9 +1,52 @@
1
  ---
2
  library_name: peft
 
 
 
 
 
 
 
 
 
3
  ---
4
- ## Training procedure
5
 
6
- ### Framework versions
7
 
 
 
8
 
9
- - PEFT 0.5.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: peft
3
+ tags:
4
+ - gpt
5
+ - code
6
+ - instruct
7
+ - WizardLM
8
+ datasets:
9
+ - WizardLM/WizardLM_evol_instruct_70k
10
+ base_model: gpt2
11
+ license: apache-2.0
12
  ---
 
13
 
14
+ ### Finetuning Overview:
15
 
16
+ **Model Used:** gpt2
17
+ **Dataset:** WizardLM/WizardLM_evol_instruct_70k
18
 
19
+ #### Dataset Insights:
20
+
21
+ The WizardLM/WizardLM_evol_instruct_70k dataset, tailored specifically for enhancing interactive capabilities, was developed using the EVOL-Instruct method. This method enhances a smaller dataset with tougher questions for the LLM to perform.
22
+
23
+ #### Finetuning Details:
24
+
25
+ With the utilization of [MonsterAPI](https://monsterapi.ai)'s [LLM finetuner](https://docs.monsterapi.ai/fine-tune-a-large-language-model-llm), this finetuning:
26
+
27
+ - Was achieved with great cost-effectiveness.
28
+ - Completed in a total duration of 14mins for 1 epoch.
29
+ - Costed `$0.525` for the entire epoch.
30
+
31
+ #### Hyperparameters & Additional Details:
32
+
33
+ - **Epochs:** 1
34
+ - **Cost Per Epoch:** $0.525
35
+ - **Total Finetuning Cost:** $0.525
36
+ - **Model Path:** gpt2
37
+ - **Learning Rate:** 0.0002
38
+ - **Data Split:** 90% train 10% validation
39
+ - **Gradient Accumulation Steps:** 4
40
+
41
+ ```
42
+ ### INSTRUCTION:
43
+ [instruction]
44
+
45
+ ### RESPONSE:
46
+ [output]
47
+ ```
48
+ Training loss :
49
+ ![training loss](train-loss.png "Training loss")
50
+
51
+ ---
52
+ license: apache-2.0