kobert-lm / tokenization_kobert.py
monologg's picture
feat: trust_remote_code enabled
dca75fa
raw
history blame
10.9 kB
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team and Jangwon Park
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization classes for KoBERT model """
import logging
import os
import unicodedata
from shutil import copyfile
from transformers import PreTrainedTokenizer
logger = logging.getLogger(__name__)
VOCAB_FILES_NAMES = {
"vocab_file": "tokenizer_78b3253a26.model",
"vocab_txt": "vocab.txt",
}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"monologg/kobert": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/kobert/tokenizer_78b3253a26.model",
"monologg/kobert-lm": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/kobert-lm/tokenizer_78b3253a26.model",
"monologg/distilkobert": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/distilkobert/tokenizer_78b3253a26.model",
},
"vocab_txt": {
"monologg/kobert": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/kobert/vocab.txt",
"monologg/kobert-lm": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/kobert-lm/vocab.txt",
"monologg/distilkobert": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/distilkobert/vocab.txt",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"monologg/kobert": 512,
"monologg/kobert-lm": 512,
"monologg/distilkobert": 512,
}
PRETRAINED_INIT_CONFIGURATION = {
"monologg/kobert": {"do_lower_case": False},
"monologg/kobert-lm": {"do_lower_case": False},
"monologg/distilkobert": {"do_lower_case": False},
}
SPIECE_UNDERLINE = "▁"
class KoBertTokenizer(PreTrainedTokenizer):
"""
SentencePiece based tokenizer. Peculiarities:
- requires `SentencePiece <https://github.com/google/sentencepiece>`_
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__(
self,
vocab_file,
vocab_txt,
do_lower_case=False,
remove_space=True,
keep_accents=False,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
**kwargs,
):
# Build vocab
self.token2idx = dict()
self.idx2token = []
with open(vocab_txt, "r", encoding="utf-8") as f:
for idx, token in enumerate(f):
token = token.strip()
self.token2idx[token] = idx
self.idx2token.append(token)
try:
import sentencepiece as spm
except ImportError:
logger.warning(
"You need to install SentencePiece to use KoBertTokenizer: https://github.com/google/sentencepiece"
"pip install sentencepiece"
)
self.do_lower_case = do_lower_case
self.remove_space = remove_space
self.keep_accents = keep_accents
self.vocab_file = vocab_file
self.vocab_txt = vocab_txt
self.sp_model = spm.SentencePieceProcessor()
self.sp_model.Load(vocab_file)
super().__init__(
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
**kwargs,
)
@property
def vocab_size(self):
return len(self.idx2token)
def get_vocab(self):
return dict(self.token2idx, **self.added_tokens_encoder)
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
try:
import sentencepiece as spm
except ImportError:
logger.warning(
"You need to install SentencePiece to use KoBertTokenizer: https://github.com/google/sentencepiece"
"pip install sentencepiece"
)
self.sp_model = spm.SentencePieceProcessor()
self.sp_model.Load(self.vocab_file)
def preprocess_text(self, inputs):
if self.remove_space:
outputs = " ".join(inputs.strip().split())
else:
outputs = inputs
outputs = outputs.replace("``", '"').replace("''", '"')
if not self.keep_accents:
outputs = unicodedata.normalize("NFKD", outputs)
outputs = "".join([c for c in outputs if not unicodedata.combining(c)])
if self.do_lower_case:
outputs = outputs.lower()
return outputs
def _tokenize(self, text):
"""Tokenize a string."""
text = self.preprocess_text(text)
pieces = self.sp_model.encode(text, out_type=str)
new_pieces = []
for piece in pieces:
if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit():
cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, ""))
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0]) == 1:
cur_pieces = cur_pieces[1:]
else:
cur_pieces[0] = cur_pieces[0][1:]
cur_pieces.append(piece[-1])
new_pieces.extend(cur_pieces)
else:
new_pieces.append(piece)
return new_pieces
def _convert_token_to_id(self, token):
"""Converts a token (str/unicode) in an id using the vocab."""
return self.token2idx.get(token, self.token2idx[self.unk_token])
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (string/unicode) using the vocab."""
return self.idx2token[index]
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
return out_string
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks
by concatenating and adding special tokens.
A KoBERT sequence has the following format:
single sequence: [CLS] X [SEP]
pair of sequences: [CLS] A [SEP] B [SEP]
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False):
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer ``prepare_for_model`` or ``encode_plus`` methods.
Args:
token_ids_0: list of ids (must not contain special tokens)
token_ids_1: Optional list of ids (must not contain special tokens), necessary when fetching sequence ids
for sequence pairs
already_has_special_tokens: (default False) Set to True if the token list is already formated with
special tokens for the model
Returns:
A list of integers in the range [0, 1]: 0 for a special token, 1 for a sequence token.
"""
if already_has_special_tokens:
if token_ids_1 is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formated with special tokens for the model."
)
return list(
map(
lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0,
token_ids_0,
)
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None):
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task.
A KoBERT sequence pair mask has the following format:
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
| first sequence | second sequence
if token_ids_1 is None, only returns the first portion of the mask (0's).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory):
"""Save the sentencepiece vocabulary (copy original file) and special tokens file
to a directory.
"""
if not os.path.isdir(save_directory):
logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
return
# 1. Save sentencepiece model
out_vocab_model = os.path.join(save_directory, VOCAB_FILES_NAMES["vocab_file"])
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_model):
copyfile(self.vocab_file, out_vocab_model)
# 2. Save vocab.txt
index = 0
out_vocab_txt = os.path.join(save_directory, VOCAB_FILES_NAMES["vocab_txt"])
with open(out_vocab_txt, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.token2idx.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
"Saving vocabulary to {}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!".format(out_vocab_txt)
)
index = token_index
writer.write(token + "\n")
index += 1
return out_vocab_model, out_vocab_txt