feat: trust_remote_code enabled
Browse files- README.md +25 -0
- tokenization_kobert.py +279 -0
- tokenizer_config.json +10 -2
README.md
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- ko
|
5 |
+
inference: false
|
6 |
+
---
|
7 |
+
|
8 |
+
# KoBERT-LM
|
9 |
+
|
10 |
+
- Further pretrained model for re-training LM Mask Head
|
11 |
+
|
12 |
+
## How to use
|
13 |
+
|
14 |
+
> If you want to import KoBERT tokenizer with `AutoTokenizer`, you should give `trust_remote_code=True`.
|
15 |
+
|
16 |
+
```python
|
17 |
+
from transformers import AutoModel, AutoTokenizer
|
18 |
+
|
19 |
+
model = AutoModel.from_pretrained("monologg/kobert-lm")
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained("monologg/kobert-lm", trust_remote_code=True)
|
21 |
+
```
|
22 |
+
|
23 |
+
## Reference
|
24 |
+
|
25 |
+
- https://github.com/SKTBrain/KoBERT
|
tokenization_kobert.py
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team and Jangwon Park
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Tokenization classes for KoBERT model """
|
16 |
+
|
17 |
+
|
18 |
+
import logging
|
19 |
+
import os
|
20 |
+
import unicodedata
|
21 |
+
from shutil import copyfile
|
22 |
+
|
23 |
+
from transformers import PreTrainedTokenizer
|
24 |
+
|
25 |
+
logger = logging.getLogger(__name__)
|
26 |
+
|
27 |
+
VOCAB_FILES_NAMES = {
|
28 |
+
"vocab_file": "tokenizer_78b3253a26.model",
|
29 |
+
"vocab_txt": "vocab.txt",
|
30 |
+
}
|
31 |
+
|
32 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
33 |
+
"vocab_file": {
|
34 |
+
"monologg/kobert": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/kobert/tokenizer_78b3253a26.model",
|
35 |
+
"monologg/kobert-lm": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/kobert-lm/tokenizer_78b3253a26.model",
|
36 |
+
"monologg/distilkobert": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/distilkobert/tokenizer_78b3253a26.model",
|
37 |
+
},
|
38 |
+
"vocab_txt": {
|
39 |
+
"monologg/kobert": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/kobert/vocab.txt",
|
40 |
+
"monologg/kobert-lm": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/kobert-lm/vocab.txt",
|
41 |
+
"monologg/distilkobert": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/distilkobert/vocab.txt",
|
42 |
+
},
|
43 |
+
}
|
44 |
+
|
45 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
46 |
+
"monologg/kobert": 512,
|
47 |
+
"monologg/kobert-lm": 512,
|
48 |
+
"monologg/distilkobert": 512,
|
49 |
+
}
|
50 |
+
|
51 |
+
PRETRAINED_INIT_CONFIGURATION = {
|
52 |
+
"monologg/kobert": {"do_lower_case": False},
|
53 |
+
"monologg/kobert-lm": {"do_lower_case": False},
|
54 |
+
"monologg/distilkobert": {"do_lower_case": False},
|
55 |
+
}
|
56 |
+
|
57 |
+
SPIECE_UNDERLINE = "▁"
|
58 |
+
|
59 |
+
|
60 |
+
class KoBertTokenizer(PreTrainedTokenizer):
|
61 |
+
"""
|
62 |
+
SentencePiece based tokenizer. Peculiarities:
|
63 |
+
- requires `SentencePiece <https://github.com/google/sentencepiece>`_
|
64 |
+
"""
|
65 |
+
|
66 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
67 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
68 |
+
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
|
69 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
70 |
+
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
vocab_file,
|
74 |
+
vocab_txt,
|
75 |
+
do_lower_case=False,
|
76 |
+
remove_space=True,
|
77 |
+
keep_accents=False,
|
78 |
+
unk_token="[UNK]",
|
79 |
+
sep_token="[SEP]",
|
80 |
+
pad_token="[PAD]",
|
81 |
+
cls_token="[CLS]",
|
82 |
+
mask_token="[MASK]",
|
83 |
+
**kwargs,
|
84 |
+
):
|
85 |
+
# Build vocab
|
86 |
+
self.token2idx = dict()
|
87 |
+
self.idx2token = []
|
88 |
+
with open(vocab_txt, "r", encoding="utf-8") as f:
|
89 |
+
for idx, token in enumerate(f):
|
90 |
+
token = token.strip()
|
91 |
+
self.token2idx[token] = idx
|
92 |
+
self.idx2token.append(token)
|
93 |
+
|
94 |
+
try:
|
95 |
+
import sentencepiece as spm
|
96 |
+
except ImportError:
|
97 |
+
logger.warning(
|
98 |
+
"You need to install SentencePiece to use KoBertTokenizer: https://github.com/google/sentencepiece"
|
99 |
+
"pip install sentencepiece"
|
100 |
+
)
|
101 |
+
|
102 |
+
self.do_lower_case = do_lower_case
|
103 |
+
self.remove_space = remove_space
|
104 |
+
self.keep_accents = keep_accents
|
105 |
+
self.vocab_file = vocab_file
|
106 |
+
self.vocab_txt = vocab_txt
|
107 |
+
|
108 |
+
self.sp_model = spm.SentencePieceProcessor()
|
109 |
+
self.sp_model.Load(vocab_file)
|
110 |
+
|
111 |
+
super().__init__(
|
112 |
+
unk_token=unk_token,
|
113 |
+
sep_token=sep_token,
|
114 |
+
pad_token=pad_token,
|
115 |
+
cls_token=cls_token,
|
116 |
+
mask_token=mask_token,
|
117 |
+
**kwargs,
|
118 |
+
)
|
119 |
+
|
120 |
+
@property
|
121 |
+
def vocab_size(self):
|
122 |
+
return len(self.idx2token)
|
123 |
+
|
124 |
+
def get_vocab(self):
|
125 |
+
return dict(self.token2idx, **self.added_tokens_encoder)
|
126 |
+
|
127 |
+
def __getstate__(self):
|
128 |
+
state = self.__dict__.copy()
|
129 |
+
state["sp_model"] = None
|
130 |
+
return state
|
131 |
+
|
132 |
+
def __setstate__(self, d):
|
133 |
+
self.__dict__ = d
|
134 |
+
try:
|
135 |
+
import sentencepiece as spm
|
136 |
+
except ImportError:
|
137 |
+
logger.warning(
|
138 |
+
"You need to install SentencePiece to use KoBertTokenizer: https://github.com/google/sentencepiece"
|
139 |
+
"pip install sentencepiece"
|
140 |
+
)
|
141 |
+
self.sp_model = spm.SentencePieceProcessor()
|
142 |
+
self.sp_model.Load(self.vocab_file)
|
143 |
+
|
144 |
+
def preprocess_text(self, inputs):
|
145 |
+
if self.remove_space:
|
146 |
+
outputs = " ".join(inputs.strip().split())
|
147 |
+
else:
|
148 |
+
outputs = inputs
|
149 |
+
outputs = outputs.replace("``", '"').replace("''", '"')
|
150 |
+
|
151 |
+
if not self.keep_accents:
|
152 |
+
outputs = unicodedata.normalize("NFKD", outputs)
|
153 |
+
outputs = "".join([c for c in outputs if not unicodedata.combining(c)])
|
154 |
+
if self.do_lower_case:
|
155 |
+
outputs = outputs.lower()
|
156 |
+
|
157 |
+
return outputs
|
158 |
+
|
159 |
+
def _tokenize(self, text):
|
160 |
+
"""Tokenize a string."""
|
161 |
+
text = self.preprocess_text(text)
|
162 |
+
pieces = self.sp_model.encode(text, out_type=str)
|
163 |
+
new_pieces = []
|
164 |
+
for piece in pieces:
|
165 |
+
if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit():
|
166 |
+
cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, ""))
|
167 |
+
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
|
168 |
+
if len(cur_pieces[0]) == 1:
|
169 |
+
cur_pieces = cur_pieces[1:]
|
170 |
+
else:
|
171 |
+
cur_pieces[0] = cur_pieces[0][1:]
|
172 |
+
cur_pieces.append(piece[-1])
|
173 |
+
new_pieces.extend(cur_pieces)
|
174 |
+
else:
|
175 |
+
new_pieces.append(piece)
|
176 |
+
|
177 |
+
return new_pieces
|
178 |
+
|
179 |
+
def _convert_token_to_id(self, token):
|
180 |
+
"""Converts a token (str/unicode) in an id using the vocab."""
|
181 |
+
return self.token2idx.get(token, self.token2idx[self.unk_token])
|
182 |
+
|
183 |
+
def _convert_id_to_token(self, index):
|
184 |
+
"""Converts an index (integer) in a token (string/unicode) using the vocab."""
|
185 |
+
return self.idx2token[index]
|
186 |
+
|
187 |
+
def convert_tokens_to_string(self, tokens):
|
188 |
+
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
|
189 |
+
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
|
190 |
+
return out_string
|
191 |
+
|
192 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
193 |
+
"""
|
194 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks
|
195 |
+
by concatenating and adding special tokens.
|
196 |
+
A KoBERT sequence has the following format:
|
197 |
+
single sequence: [CLS] X [SEP]
|
198 |
+
pair of sequences: [CLS] A [SEP] B [SEP]
|
199 |
+
"""
|
200 |
+
if token_ids_1 is None:
|
201 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
202 |
+
cls = [self.cls_token_id]
|
203 |
+
sep = [self.sep_token_id]
|
204 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
205 |
+
|
206 |
+
def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False):
|
207 |
+
"""
|
208 |
+
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
209 |
+
special tokens using the tokenizer ``prepare_for_model`` or ``encode_plus`` methods.
|
210 |
+
Args:
|
211 |
+
token_ids_0: list of ids (must not contain special tokens)
|
212 |
+
token_ids_1: Optional list of ids (must not contain special tokens), necessary when fetching sequence ids
|
213 |
+
for sequence pairs
|
214 |
+
already_has_special_tokens: (default False) Set to True if the token list is already formated with
|
215 |
+
special tokens for the model
|
216 |
+
Returns:
|
217 |
+
A list of integers in the range [0, 1]: 0 for a special token, 1 for a sequence token.
|
218 |
+
"""
|
219 |
+
|
220 |
+
if already_has_special_tokens:
|
221 |
+
if token_ids_1 is not None:
|
222 |
+
raise ValueError(
|
223 |
+
"You should not supply a second sequence if the provided sequence of "
|
224 |
+
"ids is already formated with special tokens for the model."
|
225 |
+
)
|
226 |
+
return list(
|
227 |
+
map(
|
228 |
+
lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0,
|
229 |
+
token_ids_0,
|
230 |
+
)
|
231 |
+
)
|
232 |
+
|
233 |
+
if token_ids_1 is not None:
|
234 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
235 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
236 |
+
|
237 |
+
def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None):
|
238 |
+
"""
|
239 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task.
|
240 |
+
A KoBERT sequence pair mask has the following format:
|
241 |
+
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
|
242 |
+
| first sequence | second sequence
|
243 |
+
if token_ids_1 is None, only returns the first portion of the mask (0's).
|
244 |
+
"""
|
245 |
+
sep = [self.sep_token_id]
|
246 |
+
cls = [self.cls_token_id]
|
247 |
+
if token_ids_1 is None:
|
248 |
+
return len(cls + token_ids_0 + sep) * [0]
|
249 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
250 |
+
|
251 |
+
def save_vocabulary(self, save_directory):
|
252 |
+
"""Save the sentencepiece vocabulary (copy original file) and special tokens file
|
253 |
+
to a directory.
|
254 |
+
"""
|
255 |
+
if not os.path.isdir(save_directory):
|
256 |
+
logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
|
257 |
+
return
|
258 |
+
|
259 |
+
# 1. Save sentencepiece model
|
260 |
+
out_vocab_model = os.path.join(save_directory, VOCAB_FILES_NAMES["vocab_file"])
|
261 |
+
|
262 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_model):
|
263 |
+
copyfile(self.vocab_file, out_vocab_model)
|
264 |
+
|
265 |
+
# 2. Save vocab.txt
|
266 |
+
index = 0
|
267 |
+
out_vocab_txt = os.path.join(save_directory, VOCAB_FILES_NAMES["vocab_txt"])
|
268 |
+
with open(out_vocab_txt, "w", encoding="utf-8") as writer:
|
269 |
+
for token, token_index in sorted(self.token2idx.items(), key=lambda kv: kv[1]):
|
270 |
+
if index != token_index:
|
271 |
+
logger.warning(
|
272 |
+
"Saving vocabulary to {}: vocabulary indices are not consecutive."
|
273 |
+
" Please check that the vocabulary is not corrupted!".format(out_vocab_txt)
|
274 |
+
)
|
275 |
+
index = token_index
|
276 |
+
writer.write(token + "\n")
|
277 |
+
index += 1
|
278 |
+
|
279 |
+
return out_vocab_model, out_vocab_txt
|
tokenizer_config.json
CHANGED
@@ -1,4 +1,12 @@
|
|
1 |
{
|
|
|
|
|
2 |
"do_lower_case": false,
|
3 |
-
"
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
{
|
2 |
+
"model_max_length": 512,
|
3 |
+
"max_len": 512,
|
4 |
"do_lower_case": false,
|
5 |
+
"tokenizer_class": "KoBertTokenizer",
|
6 |
+
"auto_map": {
|
7 |
+
"AutoTokenizer": [
|
8 |
+
"tokenization_kobert.KoBertTokenizer",
|
9 |
+
"tokenization_kobert.KoBertTokenizer"
|
10 |
+
]
|
11 |
+
}
|
12 |
+
}
|