metadata
license: apache-2.0
base_model: facebook/levit-256
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: levit-256-finetuned-flower
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9520871143375681
- name: Precision
type: precision
value: 0.9522871286223231
- name: Recall
type: recall
value: 0.9520871143375681
- name: F1
type: f1
value: 0.9518251458019376
levit-256-finetuned-flower
This model is a fine-tuned version of facebook/levit-256 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1677
- Accuracy: 0.9521
- Precision: 0.9523
- Recall: 0.9521
- F1: 0.9518
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.599 | 1.0 | 40 | 0.5907 | 0.8207 | 0.8515 | 0.8207 | 0.8219 |
0.7842 | 2.0 | 80 | 1.4800 | 0.6693 | 0.7271 | 0.6693 | 0.6607 |
0.7716 | 3.0 | 120 | 0.8614 | 0.7554 | 0.7853 | 0.7554 | 0.7544 |
0.5976 | 4.0 | 160 | 0.5576 | 0.8243 | 0.8470 | 0.8243 | 0.8260 |
0.488 | 5.0 | 200 | 0.4656 | 0.8555 | 0.8724 | 0.8555 | 0.8546 |
0.4871 | 6.0 | 240 | 0.4387 | 0.8672 | 0.8823 | 0.8672 | 0.8672 |
0.3606 | 7.0 | 280 | 0.3041 | 0.9045 | 0.9053 | 0.9045 | 0.9034 |
0.3159 | 8.0 | 320 | 0.3283 | 0.8976 | 0.9022 | 0.8976 | 0.8961 |
0.3078 | 9.0 | 360 | 0.2848 | 0.9125 | 0.9156 | 0.9125 | 0.9124 |
0.2922 | 10.0 | 400 | 0.2526 | 0.9180 | 0.9212 | 0.9180 | 0.9184 |
0.2412 | 11.0 | 440 | 0.2367 | 0.9281 | 0.9306 | 0.9281 | 0.9280 |
0.2095 | 12.0 | 480 | 0.2283 | 0.9314 | 0.9323 | 0.9314 | 0.9305 |
0.1786 | 13.0 | 520 | 0.1890 | 0.9408 | 0.9412 | 0.9408 | 0.9408 |
0.123 | 14.0 | 560 | 0.2071 | 0.9383 | 0.9398 | 0.9383 | 0.9382 |
0.1481 | 15.0 | 600 | 0.1854 | 0.9426 | 0.9433 | 0.9426 | 0.9426 |
0.125 | 16.0 | 640 | 0.2051 | 0.9376 | 0.9400 | 0.9376 | 0.9373 |
0.1135 | 17.0 | 680 | 0.1785 | 0.9495 | 0.9496 | 0.9495 | 0.9495 |
0.0815 | 18.0 | 720 | 0.1655 | 0.9539 | 0.9542 | 0.9539 | 0.9538 |
0.0784 | 19.0 | 760 | 0.1707 | 0.9525 | 0.9527 | 0.9525 | 0.9521 |
0.0905 | 20.0 | 800 | 0.1677 | 0.9521 | 0.9523 | 0.9521 | 0.9518 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.0.1
- Datasets 2.18.0
- Tokenizers 0.15.2