momo345's picture
End of training
f07a138 verified
metadata
license: apache-2.0
base_model: facebook/levit-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: levit-256-finetuned-flower
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9520871143375681
          - name: Precision
            type: precision
            value: 0.9522871286223231
          - name: Recall
            type: recall
            value: 0.9520871143375681
          - name: F1
            type: f1
            value: 0.9518251458019376

levit-256-finetuned-flower

This model is a fine-tuned version of facebook/levit-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1677
  • Accuracy: 0.9521
  • Precision: 0.9523
  • Recall: 0.9521
  • F1: 0.9518

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.005
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.599 1.0 40 0.5907 0.8207 0.8515 0.8207 0.8219
0.7842 2.0 80 1.4800 0.6693 0.7271 0.6693 0.6607
0.7716 3.0 120 0.8614 0.7554 0.7853 0.7554 0.7544
0.5976 4.0 160 0.5576 0.8243 0.8470 0.8243 0.8260
0.488 5.0 200 0.4656 0.8555 0.8724 0.8555 0.8546
0.4871 6.0 240 0.4387 0.8672 0.8823 0.8672 0.8672
0.3606 7.0 280 0.3041 0.9045 0.9053 0.9045 0.9034
0.3159 8.0 320 0.3283 0.8976 0.9022 0.8976 0.8961
0.3078 9.0 360 0.2848 0.9125 0.9156 0.9125 0.9124
0.2922 10.0 400 0.2526 0.9180 0.9212 0.9180 0.9184
0.2412 11.0 440 0.2367 0.9281 0.9306 0.9281 0.9280
0.2095 12.0 480 0.2283 0.9314 0.9323 0.9314 0.9305
0.1786 13.0 520 0.1890 0.9408 0.9412 0.9408 0.9408
0.123 14.0 560 0.2071 0.9383 0.9398 0.9383 0.9382
0.1481 15.0 600 0.1854 0.9426 0.9433 0.9426 0.9426
0.125 16.0 640 0.2051 0.9376 0.9400 0.9376 0.9373
0.1135 17.0 680 0.1785 0.9495 0.9496 0.9495 0.9495
0.0815 18.0 720 0.1655 0.9539 0.9542 0.9539 0.9538
0.0784 19.0 760 0.1707 0.9525 0.9527 0.9525 0.9521
0.0905 20.0 800 0.1677 0.9521 0.9523 0.9521 0.9518

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.0.1
  • Datasets 2.18.0
  • Tokenizers 0.15.2