|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- FreedomIntelligence/ALLaVA-4V |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
|
|
# ALLaVA: Harnessing GPT4V-synthesized Data for A Lite Vision-Language Model |
|
|
|
# this is a fork from the official repo |
|
|
|
<p align="center"> |
|
β‘ALLaVA is a project that provides a large-scale GPT4V-synthesized dataset for training LVLMs.β‘ |
|
</p> |
|
|
|
<!-- <p align="center"> |
|
|
|
![Python 3.10](https://img.shields.io/badge/Python-3.10-lightblue) ![Pytorch 1.13.0](https://img.shields.io/badge/PyTorch-2.1.1-lightblue) ![transformers](https://img.shields.io/badge/transformers-4.37.0-lightblue) |
|
</p> --> |
|
|
|
|
|
|
|
<p align="center"> |
|
π <a href="https://arxiv.org/abs/2402.11684" target="_blank">Paper</a> β’ π <a href="https://allava.freedomai.cn/#/" target="_blank">Demo</a> β’ π¨π»βπ» <a href="https://github.com/FreedomIntelligence/ALLaVA" target="_blank">Github</a> |
|
</p> |
|
<p align="center"> |
|
π€ <a href="https://huggingface.co/datasets/FreedomIntelligence/ALLaVA-4V" target="_blank">ALLaVA-4V Dataset</a> |
|
</p> |
|
|
|
<p align="center"> |
|
π€ <a href="https://huggingface.co/FreedomIntelligence/ALLaVA-3B-Longer" target="_blank">ALLaVA-3B-Longer</a> β’ π€ <a href="https://huggingface.co/FreedomIntelligence/ALLaVA-3B" target="_blank">ALLaVA-3B</a> |
|
</p> |
|
|
|
<!-- <p align="center"> |
|
π <a href="https://arxiv.org/abs/2402.11684" target="_blank">Paper</a> β’ π <a href="https://allava.freedomai.cn/#/" target="_blank">Demo</a> β’ π€ <a href="https://huggingface.co/datasets/FreedomIntelligence/ALLaVA-4V" target="_blank">ALLaVA-4V Dataset</a> β’ π€ <a href="https://huggingface.co/FreedomIntelligence/ALLaVA-3B-Longer" target="_blank">ALLaVA-3B-Longer</a> β’ π€ <a href="https://huggingface.co/FreedomIntelligence/ALLaVA-3B" target="_blank">ALLaVA-3B</a> |
|
<br> <a href="https://github.com/FreedomIntelligence/CMB/blob/main/README_zh.md"> δΈζ</a> | <a href="https://github.com/FreedomIntelligence/CMB/blob/main/README.md"> English |
|
</p> --> |
|
|
|
## Benchmark Result |
|
|
|
Our model [**ALLaVA-3B-Longer**](https://huggingface.co/FreedomIntelligence/ALLaVA-3B-Longer) and [**ALLaVA-3B**](https://huggingface.co/FreedomIntelligence/ALLaVA-3B) achieve competitive results on 12 benchmarks. Bold numbers denote the SOTA performance among 3B-scale models. |
|
|
|
| Model | Backbone | Vicuna-80 | MMB | SEEDBench-v1 (img) | MM-Vet | MMMU (val) | MME | TextVQA | GQA | EMT (CIFAR10) | MLLM-Bench | TouchStone | LLaVA (In-the-Wild) | |
|
|-------|----------|-----------|-----|-------------|--------|----------|-----|------|-----|---------|----|----|--------| |
|
| Qwen-VL-Chat | Qwen-7B | - | 60.6 | 65.4 | - | 35.9 | 1487.5 | 61.5 | 57.5 | - | 6.2 | 711.6 | - | |
|
| LLaVA-v1.5-7B | Vicuna-7B | - | 64.3 | - | 31.1 | - | 1510.7 | 58.2 | 62.0 | - | - | | 65.4 | |
|
| LLaVA-v1.5-13B | Vicuna-13B | 22.50 | 67.7 | 68.2 | 35.4 | 36.4 | 1531.3 | 61.3 | 63.3 | 85.0 | 7.4 | 637.7 | 70.7 | |
|
| ShareGPT4V-7B | Vicuna-7B | - | 68.8 | 69.7 | 37.6 | - | 1943.8 | 60.4 | 63.3 | - | - | - | 72.6 | |
|
| TinyGPT-V | Phi2-2.7B | - | - | - | - | - | - | - | 33.6 | - | - | - | - | |
|
| MobileVLM | MobileLLaMA-2.7B | - | 59.6 | - | - | - | 1288.9 | 47.5 | - | - | - | - | - | |
|
| LLaVA-Phi | Phi2-2.7B | - | 59.8 | - | 28.9 | - | 1335.1 | 48.6 | - | - | - | - | - | |
|
| **ALLaVA-3B** | Phi2-2.7B | 48.8 | 64.0 | 65.2 | 32.2 | **35.3** | **1623.2** | 49.5 | 48.8 | **90.2** | 6.7 | 632.0 | 69.4 | |
|
| **ALLaVA-3B-Longer** | Phi2-2.7B | **52.5** | **64.6** | **65.6** | **35.5** | 33.2 | 1564.6 | **50.3** | **50.0** | 85.9 | **8.8** | **636.5** | **71.7** | |
|
|
|
The detailed information of each benchmark is shown in Table 4 of our [technical report](https://arxiv.org/pdf/2402.11684.pdf). |
|
|
|
|
|
|
|
## π Inference |
|
|
|
### Load from π€ (Recommended) |
|
See the [example script](https://github.com/FreedomIntelligence/ALLaVA/blob/main/allava/serve/huggingface_inference.py). |
|
|
|
### CLI |
|
See [here](https://github.com/FreedomIntelligence/ALLaVA/tree/main?tab=readme-ov-file#cli) for CLI code snippet. |
|
|
|
|
|
|
|
## ποΈββοΈ Training |
|
|
|
### Data |
|
<div align=center> |
|
<img src="training_datasets_by_stage.jpg" width = "640" alt="training_datasets" align=center /> |
|
</div> |
|
|
|
As shown in the table, ALLaVA-3B uses 1M and 1.5M data for PT. and FT., respectively. |
|
ALLaVA-3B-Longer trains one more epoch (i.e. 3M in total) for the FT. stage. |
|
|
|
### Code |
|
The training code is largely based on [LLaVA-v1.5](https://github.com/haotian-liu/LLaVA). |
|
We wholeheartedly express our gratitude for their invaluable contributions to open-sourcing LVLMs. |
|
|
|
### Cost |
|
We train our models on 8*A800 GPUs. |
|
[ALLaVA-3B-Longer](https://huggingface.co/FreedomIntelligence/ALLaVA-3B-Longer) takes 8.3h for PT and 21.3h for FT. |
|
[ALLaVA-3B](https://huggingface.co/FreedomIntelligence/ALLaVA-3B) takes 8.3h for PT and 10.6h for FT. |
|
These two models share the same PT procedure. |
|
|
|
|
|
### Hyperparameters |
|
|
|
| Global Batch Size| ZeRO Stage| Optimizer | Max LR| Min LR | Scheduler | Max length | Weight decay | |
|
| ---: | ---: |--:| ---: | ---: | ---: | ---: | ---: | |
|
| 256 (PT) / 128 (FT) | 1| AdamW | 2e-5 | 2e-6 | CosineAnnealingWarmRestarts | 2048 | 0 | |
|
|
|
The LM backbone, projector are trainable, while the vision encoder is kept frozen. |
|
**The trainabilities of each module are the same for both stages.** |
|
|
|
|
|
## π ALLaVA-4V Data |
|
|
|
The majority part of training data is [ALLaVA-4V](https://huggingface.co/datasets/FreedomIntelligence/ALLaVA-4V). See [here](https://github.com/FreedomIntelligence/ALLaVA/tree/main?tab=readme-ov-file#data-preparation) to prepare it for training. |
|
|
|
|
|
## π Contributors |
|
|
|
- Project Leader: [Guiming Hardy Chen](https://g-h-chen.github.io/) |
|
|
|
- Data: Shunian Chen, [Junying Chen](https://jymchen.github.io/), Xiangbo Wu |
|
|
|
- Evaluation: [Ruifei Zhang](https://scholar.google.com/citations?user=W4zOhmEAAAAJ&hl=zh-CN) |
|
|
|
- Deployment: Xiangbo Wu, Zhiyi Zhang |
|
|
|
- Advising: [Zhihong Chen](https://zhjohnchan.github.io/), [Benyou Wang](https://wabyking.github.io/old.html) |
|
|
|
- Others: Jianquan Li, [Xiang Wan](https://scholar.google.com/citations?user=e3_kWigAAAAJ&hl=zh-CN) |
|
|
|
|
|
|
|
|
|
|
|
## π Citation |
|
If you find our data useful, please consider citing our work! We are FreedomIntelligence from [Shenzhen Research Institute of Big Data](http://sribd.cn/en) and [The Chinese University of Hong Kong, Shenzhen](https://sds.cuhk.edu.cn/en) |
|
``` |
|
@article{chen2024allava, |
|
title={ALLaVA: Harnessing GPT4V-synthesized Data for A Lite Vision-Language Model}, |
|
author={Chen, Guiming Hardy and Chen, Shunian and Zhang, Ruifei and Chen, Junying and Wu, Xiangbo and Zhang, Zhiyi and Chen, Zhihong and Li, Jianquan and Wan, Xiang and Wang, Benyou}, |
|
journal={arXiv preprint arXiv:2402.11684}, |
|
year={2024} |
|
} |
|
``` |
|
|