|
--- |
|
license: apache-2.0 |
|
tags: |
|
- moe |
|
train: false |
|
inference: false |
|
pipeline_tag: text-generation |
|
--- |
|
## Mixtral-8x7B-Instruct-v0.1-hf-attn-4bit-moe-3bit-metaoffload-HQQ |
|
This is a version of the |
|
<a href="https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1"> Mixtral-8x7B-Instruct-v0.1 model</a> quantized with a mix of 4-bit and 3-bit via Half-Quadratic Quantization (HQQ). More specifically, the attention layers are quantized to 4-bit and the experts are quantized to 3-bit. |
|
|
|
Contrary to the <a href="https://huggingface.co/mobiuslabsgmbh/Mixtral-8x7B-Instruct-v0.1-hf-attn-4bit-moe-2bitgs8-metaoffload-HQQ"> 2bitgs8 model </a> that was designed to use less GPU memory, this one uses about ~22GB for the folks who want to get better quality and use the maximum VRAM available on 24GB GPUs. It reaches an impressive <b>71.10</b> LLM leaderboard score, not too far from the original model's <b>72.62</b>. |
|
|
|
![image/gif](https://cdn-uploads.huggingface.co/production/uploads/636b945ef575d3705149e982/-gwGOZHDb9l5VxLexIhkM.gif) |
|
|
|
---------------------------------------------------------------------------------------------------------------------------------- |
|
</p> |
|
|
|
## Performance |
|
| Models | Mixtral Original | HQQ quantized | |
|
|-------------------|------------------|------------------| |
|
| Runtime VRAM | 94 GB | <b> 22.3 GB</b> | |
|
| ARC (25-shot) | 70.22 | 69.62 | |
|
| Hellaswag (10-shot)| 87.63 | 86.05 | |
|
| MMLU (5-shot) | 71.16 | 69.46 | |
|
| TruthfulQA-MC2 | 64.58 | 62.63 | |
|
| Winogrande (5-shot)| 81.37 | 81.06 | |
|
| GSM8K (5-shot)| 60.73 | 57.77 | |
|
| Average| 72.62 | 71.10 | |
|
|
|
### Basic Usage |
|
To run the model, install the HQQ library from https://github.com/mobiusml/hqq and use it as follows: |
|
``` Python |
|
import transformers |
|
from threading import Thread |
|
|
|
model_id = 'mobiuslabsgmbh/Mixtral-8x7B-Instruct-v0.1-hf-attn-4bit-moe-3bit-metaoffload-HQQ' |
|
#Load the model |
|
from hqq.engine.hf import HQQModelForCausalLM, AutoTokenizer |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = HQQModelForCausalLM.from_quantized(model_id) |
|
|
|
#Optional: set backend/compile |
|
#You will need to install CUDA kernels apriori |
|
# git clone https://github.com/mobiusml/hqq/ |
|
# cd hqq/kernels && python setup_cuda.py install |
|
from hqq.core.quantize import * |
|
HQQLinear.set_backend(HQQBackend.ATEN_BACKPROP) |
|
|
|
def chat_processor(chat, max_new_tokens=100, do_sample=True): |
|
tokenizer.use_default_system_prompt = False |
|
streamer = transformers.TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) |
|
|
|
generate_params = dict( |
|
tokenizer("<s> [INST] " + chat + " [/INST] ", return_tensors="pt").to('cuda'), |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=do_sample, |
|
top_p=0.90, |
|
top_k=50, |
|
temperature= 0.6, |
|
num_beams=1, |
|
repetition_penalty=1.2, |
|
) |
|
|
|
t = Thread(target=model.generate, kwargs=generate_params) |
|
t.start() |
|
outputs = [] |
|
for text in streamer: |
|
outputs.append(text) |
|
print(text, end="", flush=True) |
|
|
|
return outputs |
|
|
|
################################################################################################ |
|
#Generation |
|
outputs = chat_processor("How do I build a car?", max_new_tokens=1000, do_sample=False) |
|
``` |
|
|
|
### Quantization |
|
|
|
You can reproduce the model using the following quant configs: |
|
|
|
``` Python |
|
from hqq.engine.hf import HQQModelForCausalLM, AutoTokenizer |
|
|
|
model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1" |
|
model = HQQModelForCausalLM.from_pretrained(model_id, use_auth_token=hf_auth, cache_dir=cache_path) |
|
|
|
#Quantize params |
|
from hqq.core.quantize import * |
|
attn_prams = BaseQuantizeConfig(nbits=4, group_size=64, offload_meta=True) |
|
experts_params = BaseQuantizeConfig(nbits=3, group_size=64, offload_meta=True) |
|
|
|
zero_scale_group_size = 128 |
|
attn_prams['scale_quant_params']['group_size'] = zero_scale_group_size |
|
attn_prams['zero_quant_params']['group_size'] = zero_scale_group_size |
|
experts_params['scale_quant_params']['group_size'] = zero_scale_group_size |
|
experts_params['zero_quant_params']['group_size'] = zero_scale_group_size |
|
|
|
quant_config = {} |
|
#Attention |
|
quant_config['self_attn.q_proj'] = attn_prams |
|
quant_config['self_attn.k_proj'] = attn_prams |
|
quant_config['self_attn.v_proj'] = attn_prams |
|
quant_config['self_attn.o_proj'] = attn_prams |
|
#Experts |
|
quant_config['block_sparse_moe.experts.w1'] = experts_params |
|
quant_config['block_sparse_moe.experts.w2'] = experts_params |
|
quant_config['block_sparse_moe.experts.w3'] = experts_params |
|
|
|
#Quantize |
|
model.quantize_model(quant_config=quant_config, compute_dtype=torch.float16); |
|
model.eval(); |
|
``` |
|
|