This is a version of the DeepSeek-R1-Distill-Qwen-1.5B model re-distilled for better performance.

Performance

Models DeepSeek-R1-Distill-Qwen-1.5B DeepSeek-R1-ReDistill-Qwen-1.5B-v1.0
ARC (25-shot) 40.96 41.3
HellaSwag (10-shot) 44 45.22
MMLU (5-shot) 39.27 42.01
TruthfulQA-MC2 45.17 46.64
Winogrande (5-shot) 55.49 56.75
GSM8K (5-shot) 69.9 73.24
Average 49.13 50.86
Models DeepSeek-R1-Distill-Qwen-1.5B DeepSeek-R1-ReDistill-Qwen-1.5B-v1.0
GPQA (0-shot) 26.96 27.8
MMLU PRO (5-shot) 16.74 19.44
MUSR (0-shot) 35.93 35.94
BBH (3-shot) 35.12 35.11
IfEval (0-shot) 24.94 27.1

Usage

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
compute_dtype = torch.bfloat16
device   = 'cuda'
model_id = "mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-1.5B-v1.0"

model     = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=compute_dtype, attn_implementation="sdpa", device_map=device)
tokenizer = AutoTokenizer.from_pretrained(model_id)

chat    = tokenizer.apply_chat_template([{"role":"user", "content":"What is 1.5+102.2?"}], tokenize=True, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(chat.to(device), max_new_tokens=1024, do_sample=True) 
print(tokenizer.decode(outputs[0]))

Output:

<|begin▁of▁sentence|><|User|>What is 1.5+102.2?<|Assistant|><think>
First, I identify the numbers involved in the addition: 1.5 and 102.2.

Next, I add the whole numbers: 1 + 102 equals 103.

Then, I add the decimal parts: 0.5 + 0.2 equals 0.7.

Finally, I combine the results: 103 + 0.7 equals 103.7.
</think>

To solve the addition \(1.5 + 102.2\), follow these steps:

1. **Add the whole numbers:**
   \[
   1 + 102 = 103
   \]

2. **Add the decimal parts:**
   \[
   0.5 + 0.2 = 0.7
   \]

3. **Combine the results:**
   \[
   103 + 0.7 = 103.7
   \]

So, the final answer is \(\boxed{103.7}\).<|end▁of▁sentence|>
Downloads last month
0
Safetensors
Model size
1.78B params
Tensor type
BF16
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-1.5B-v1.0

Quantizations
2 models

Collection including mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-1.5B-v1.0