Uploaded model
- Developed by: mnm373
- License: apache-2.0
- Finetuned from model : gemma-2-9b
This gemma2 model was trained 2x faster with Unsloth and Huggingface's TRL library.
Usage
# 必要なライブラリをインストール
!pip uninstall unsloth -y
!pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install --upgrade torch
!pip install --upgrade xformers
# 必要なライブラリを読み込み
from unsloth import FastLanguageModel
import json
from tqdm import tqdm
import re
# モデルをロード
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "mnm373/gemma-2-9b-it-v3_lora",
load_in_4bit = True,
trust_remote_code=True,
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
# データセットの読み込み
# 事前にデータをアップロードしてください
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
# 推論の実行
results = []
for dt in tqdm(datasets):
input_text = dt["input"]
prompt = f"""### 指示\n{input_text}\n### 回答\n"""
inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=1024, use_cache=True, do_sample=False, repetition_penalty=1.2)
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答\n')[-1]
# 不要なフレーズを削除
if prediction.startswith("こんにちは!"):
prediction = prediction.lstrip("こんにちは!")
if prediction.startswith("もちろんです!"):
prediction = prediction.lstrip("もちろんです!")
phrases_to_remove = [
"ユーモアを交えてお答えしますね。",
"ユーモアを交えつつお答えしますね。"
]
for phrase in phrases_to_remove:
prediction = prediction.replace(phrase, "")
# 不要な空白や改行をトリミング
prediction = prediction.strip()
results.append({"task_id": dt["task_id"], "input": input_text, "output": prediction})
# 結果をjsonlで保存。
json_file_id = re.sub(".*/", "", adapter_id)
with open(f"/content/{json_file_id}_output.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False)
f.write('\n')