{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7881be572050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7881be5720e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7881be572170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7881be572200>", "_build": "<function ActorCriticPolicy._build at 0x7881be572290>", "forward": "<function ActorCriticPolicy.forward at 0x7881be572320>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7881be5723b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7881be572440>", "_predict": "<function ActorCriticPolicy._predict at 0x7881be5724d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7881be572560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7881be5725f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7881be572680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7881be513d00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1001472, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719313999270966596, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAADYVbsWPfU+glqdPYH+n75Ia7E9BaNdvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHOpH6/IsAiMAWyUTVwBjAF0lEdAngLMBIWgvnV9lChoBkdActW0E5hjOWgHTQYBaAhHQJ4EQ7GNrCZ1fZQoaAZHQHL+b5hz/6xoB0v9aAhHQJ4FtdgOSW91fZQoaAZHQHEDgZKnNxFoB00TAWgIR0CeCmGcFyJbdX2UKGgGR0ByUEKBun/DaAdL7GgIR0CeC7bWEsasdX2UKGgGR0BvIGUILPUsaAdL5WgIR0CeDQAXl8w6dX2UKGgGR0BzBa/j81n/aAdL+GgIR0CeDnAYpDu0dX2UKGgGR0BzTKRMewLWaAdNHgFoCEdAnhAMYZVGTnV9lChoBkdAcGJy/9Hc12gHS/loCEdAnhFytmtheHV9lChoBkdAcN3ExIre7GgHS+ZoCEdAnhM3ZPEbYXV9lChoBkdAck0A3T/hl2gHS+FoCEdAnhTWxD9fkXV9lChoBkdAcP6/nW8RMGgHS/JoCEdAnhsNKVY6n3V9lChoBkdAcF3/z8P4EmgHS+VoCEdAnhzZtWMjvHV9lChoBkdAccDCL/CIlGgHTQEBaAhHQJ4eTa24NI91fZQoaAZHQHLIl89fTkRoB00JAWgIR0CeH9ozeoDQdX2UKGgGR0Bw260w8GLUaAdL7GgIR0CeITIoE0SAdX2UKGgGR0Bypgs052haaAdNEwFoCEdAniLBXwLE1nV9lChoBkdAcIB29+PRzGgHS9xoCEdAniQDlkpZwHV9lChoBkdAcp7W8yvcJ2gHS+NoCEdAniVL+cYqG3V9lChoBkdAcLBejEehf2gHS+5oCEdAniaixFAmiXV9lChoBkdAcqRtpVS4v2gHS+toCEdAnisAzUI9knV9lChoBkdAcs9aB7NSqGgHS9poCEdAnixCaNMoMXV9lChoBkdAcxn2AXl8xGgHS+ZoCEdAni2WdNFjNXV9lChoBkdAcOTFCb+cY2gHTRwBaAhHQJ4vLIikftB1fZQoaAZHQG/Lmpda+vhoB0vnaAhHQJ4wgXUH6dl1fZQoaAZHQHIu0uDjBEdoB0v3aAhHQJ4x514gRsd1fZQoaAZHQHNI48hcJMRoB00JAWgIR0CeM2nuAqd6dX2UKGgGR0Bv8hazNUwSaAdNFAFoCEdAnjT87IT4+XV9lChoBkdAcywOhkAggWgHS/5oCEdAnjl6nFYMfHV9lChoBkdAcA/DEWIoE2gHS+NoCEdAnjrJFkQPJHV9lChoBkdATwRTER8MNWgHS3toCEdAnjt+kDZDiXV9lChoBkdAb/q7TUiIL2gHS/NoCEdAnjzk6HTJAHV9lChoBkdAcDfylvZRK2gHS9xoCEdAnj4j3ueBhHV9lChoBkdARGbLU1AJLWgHS6poCEdAnj8dCRfWtnV9lChoBkdAcMemUGFBY2gHS95oCEdAnkBk78vVVnV9lChoBkdAcdPXMyJsPGgHS+RoCEdAnkGv9YOlPHV9lChoBkdAcPnV+Zw4sGgHS+5oCEdAnkMMfeUILXV9lChoBkdAc1npKzzErGgHS/9oCEdAnkiYI0IkaHV9lChoBkdAcZX42S+xnmgHS/hoCEdAnkqixZ+x4nV9lChoBkdAcjHLs8gZCWgHS9RoCEdAnkxUfLcKxHV9lChoBkdAS+2JrLyMDWgHS4BoCEdAnk1SZv1lG3V9lChoBkdAcvKqEvkBCGgHTQ0BaAhHQJ5PZVdX1ap1fZQoaAZHQHJ5RXXAdn1oB0vRaAhHQJ5QmYG+sYF1fZQoaAZHQDS9rSE12q1oB0uzaAhHQJ5RnRnezld1fZQoaAZHQHPsNrKvFFVoB0vbaAhHQJ5S3EBKcut1fZQoaAZHQHCJURe1KGtoB0v2aAhHQJ5UVIlMRHx1fZQoaAZHQGy5Mf7rLQpoB0v3aAhHQJ5V3nlnyup1fZQoaAZHQHDi6LKmsNloB0v2aAhHQJ5aae18b711fZQoaAZHQHBFODvmYBxoB0vtaAhHQJ5bwYZVGTd1fZQoaAZHQHHpqPXCj1xoB00HAWgIR0CeXVTr3TNMdX2UKGgGR0BwW2ThYNiIaAdL02gIR0CeXocN6PbPdX2UKGgGR0By4+X8fmtAaAdL0WgIR0CeX7R5C4SZdX2UKGgGR0BOoYb0e2d/aAdLrmgIR0CeYLW9US7HdX2UKGgGR0BujjngYP5IaAdL1WgIR0CeYeg3974SdX2UKGgGR0BzMCA2AG0NaAdL32gIR0CeYycoH9m6dX2UKGgGR0Bx04xdpqREaAdL4mgIR0CeZG1tfoicdX2UKGgGR0By4B9G7SRbaAdL8WgIR0CeaOYLb5/LdX2UKGgGR0By8A8yN4qxaAdNFQFoCEdAnmp5j2BatHV9lChoBkdAcChww0wai2gHS+doCEdAnmvFiWmgrnV9lChoBkdAcQQL61stTWgHS/hoCEdAnm0y1Vo6CHV9lChoBkdAc6p36hxo7GgHS+JoCEdAnm57ThHby3V9lChoBkdAcjOkQf6oEWgHS+5oCEdAnm/W0NSZSnV9lChoBkdAcKrf8uSOimgHS8VoCEdAnnD0lzEJjXV9lChoBkdAbXNSzgMtsmgHS+5oCEdAnnJaaw2VFHV9lChoBkdAcbC0W/JvHmgHS/JoCEdAnnbIFJQLu3V9lChoBkdAbnnIz3yqdmgHS+NoCEdAnniAMH8jzXV9lChoBkdAcMTK3d9DyGgHTQYBaAhHQJ56YhUzbex1fZQoaAZHQHE1E87p3X9oB0vpaAhHQJ58I2MsH0N1fZQoaAZHQHAmCyY5T61oB0vmaAhHQJ5+E2ZRbbF1fZQoaAZHQG6uM189fTloB0vlaAhHQJ5/2Axzq8l1fZQoaAZHQHCuJJGvwE1oB00QAWgIR0CegfDxLCemdX2UKGgGR0BwPyrcTJyRaAdL72gIR0Ceg1VYp2ECdX2UKGgGR0BzHSV5a/yoaAdNEQFoCEdAnoThLGrCFnV9lChoBkdAQIcxj8UEgWgHS7RoCEdAnoju5OJtSHV9lChoBkdAcJ7DeTFERmgHS/FoCEdAnopbEDQqqnV9lChoBkdAciUENe+mFmgHS/JoCEdAnou4VuaWonV9lChoBkdAcMAsj3VTaWgHS91oCEdAnozyy6cy33V9lChoBkdAc7YtelbeM2gHS9hoCEdAno4vZIxxk3V9lChoBkdAcKHeWOZLI2gHS9doCEdAno9fV3EAHXV9lChoBkdAcCPlv60pmWgHTQ0BaAhHQJ6Q4d5prUN1fZQoaAZHQHEI/YBeXzFoB0vVaAhHQJ6SGlpGnXN1fZQoaAZHQHJwJzo2XLNoB0v9aAhHQJ6ThY9xIat1fZQoaAZHQHBSPf8/D+BoB0vuaAhHQJ6X+Yb83uN1fZQoaAZHQHMu0TDfm9xoB0vuaAhHQJ6ZaYTj/+91fZQoaAZHQEWbq9Gqgh9oB0uqaAhHQJ6aaN0eU6h1fZQoaAZHQHF3VFDv3JxoB0vaaAhHQJ6bprKvFFV1fZQoaAZHQG3nPhQ3xWloB0vUaAhHQJ6c0se4kNZ1fZQoaAZHQHJ5BwhnrY5oB00FAWgIR0Cenk/G2kSFdX2UKGgGR0BxI0PhAGB4aAdL0WgIR0Cen322oegddX2UKGgGR0Bwk6BpYcNpaAdL22gIR0CeoLhfBvaUdX2UKGgGR0ByTvZh8YygaAdNDgFoCEdAnqJCIpH7QHV9lChoBkdAcR3u2Zy+6GgHTQgBaAhHQJ6m7buc+aB1fZQoaAZHQG2Cv114gRtoB0vWaAhHQJ6oIAGSpzd1fZQoaAZHQHAiitzS1E5oB0vfaAhHQJ6pX4sVclh1fZQoaAZHQHJ8rgjyFwloB0vKaAhHQJ6q+Xt0FKV1fZQoaAZHQHGo9oWYWtVoB0vUaAhHQJ6sd7HAAQx1fZQoaAZHQHFlUeQuEmJoB0v/aAhHQJ6uSPp6hQF1fZQoaAZHQHEL2s3hn8NoB0vpaAhHQJ6wS5TZQHl1fZQoaAZHQHEuRG6PKdRoB0viaAhHQJ6yFJ+UhV51fZQoaAZHQHEAflyR0U5oB0vVaAhHQJ6zTRzBAOd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2445, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVogEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQUDjIwufTJ7iIaFAurv4KaYwDaW5jlIoRJwyAqWT26hHlFKyZxOWWyQB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRKNDYUJnVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |