mmolony commited on
Commit
9504536
1 Parent(s): fa4a15f

Just run more epochs

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 204.88 +/- 103.63
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 253.30 +/- 56.30
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7881be572050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7881be5720e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7881be572170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7881be572200>", "_build": "<function ActorCriticPolicy._build at 0x7881be572290>", "forward": "<function ActorCriticPolicy.forward at 0x7881be572320>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7881be5723b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7881be572440>", "_predict": "<function ActorCriticPolicy._predict at 0x7881be5724d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7881be572560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7881be5725f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7881be572680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7881be513d00>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719311287530883095, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAJprWTyuSZq6+6oXOhdSvjUX4tq6vkkvuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGVols54nneMAWyUTegDjAF0lEdAm6PEbT+efHV9lChoBkdAYRhKTSsr/mgHTegDaAhHQJuslqxkd3l1fZQoaAZHQGcendoFmnRoB03oA2gIR0Cbs7p0OmSAdX2UKGgGR0Bu4TxEv0yyaAdNGwFoCEdAm7a2elKsdXV9lChoBkdAZZF6gM+eOGgHTegDaAhHQJu98eii7Cl1fZQoaAZHQCmWyZ8a4tpoB0uMaAhHQJu+vrOZ9eB1fZQoaAZHQGPvhyS3b21oB03oA2gIR0CbyBtwJgLJdX2UKGgGR0Bi0nhS9/SZaAdN6ANoCEdAm8+a9sabWnV9lChoBkdAYlqQo1DSgGgHTegDaAhHQJvW1yxRl6J1fZQoaAZHQGXh59d/rjZoB03oA2gIR0Cb3hStNi6QdX2UKGgGR0BiiTCHh0heaAdN6ANoCEdAm+U8Ti83/HV9lChoBkdAZwSlLOAy22gHTegDaAhHQJvsbDziCJ51fZQoaAZHQGMuPDgqEvloB03oA2gIR0Cb9FT5ftx/dX2UKGgGR0Bo33hIe5nUaAdN6ANoCEdAm/3j72tdRnV9lChoBkdAY9jRoAXEZWgHTegDaAhHQJwFH39JjDt1fZQoaAZHQGVTAc1fmcRoB03oA2gIR0CcDE0W/JvHdX2UKGgGR0Am6p1ie/YbaAdLYWgIR0CcDOK9f1HwdX2UKGgGR0BkRi4x1xKhaAdN6ANoCEdAnBQwNsnAqXV9lChoBkdAZYCLBsQ/YGgHTegDaAhHQJwbWUr08Nh1fZQoaAZHQEM6VEd/8VJoB0uQaAhHQJwcL/Ot4iZ1fZQoaAZHQGYC6E8JUo9oB03oA2gIR0CcI151/2CedX2UKGgGR0Bl2m9rXUYsaAdN6ANoCEdAnCzEO/cnE3V9lChoBkdAYW3s9B8hLWgHTegDaAhHQJw1Eotthux1fZQoaAZHQEv8UOd5IH1oB0t8aAhHQJw11UOuq3p1fZQoaAZHQETeqU/wAlxoB0ubaAhHQJw2xZ8rqdJ1fZQoaAZHQGDxwwTM7ltoB03oA2gIR0CcPj55qubJdX2UKGgGR0Bk2L79AHE/aAdN6ANoCEdAnEV26ClJpXV9lChoBkdAYxor2g398GgHTegDaAhHQJxMrFPznRt1fZQoaAZHQGJEraVUuL9oB03oA2gIR0CcU/mgJ1JUdX2UKGgGR0BlQom5UcXFaAdN6ANoCEdAnFwkPH1e0HV9lChoBkdAaktnvDxb0WgHTegDaAhHQJxlKcoYvWZ1fZQoaAZHQGL1BMi8nNRoB03oA2gIR0CcbGX5nDiwdX2UKGgGR0BmFJ1HOKO1aAdN6ANoCEdAnHOGQXAM2HV9lChoBkdAZuXw+dK/VWgHTegDaAhHQJx6oXyiEg51fZQoaAZHQGxUZIpYs/ZoB0vqaAhHQJx7/61stTV1fZQoaAZHQGr22CNCJGhoB00bAWgIR0CcfaTBZZB+dX2UKGgGR0AwfPKdQO4HaAdLZmgIR0CcfjpAD7qIdX2UKGgGR0Bga6GBWgezaAdN6ANoCEdAnIW06DGtIXV9lChoBkdAY2F3os7MgWgHTegDaAhHQJyN6Oo5xR51fZQoaAZHQGTrUQCjk+5oB03oA2gIR0CclxtmL9/CdX2UKGgGR0BCcA3tKIznaAdLaGgIR0Ccl72SdOIqdX2UKGgGR0BjZPiBGx2TaAdN6ANoCEdAnJ7e/k/8mHV9lChoBkdAYZ4XvYvnKWgHTegDaAhHQJymEsXizcB1fZQoaAZHQGGy6cy31BdoB03oA2gIR0CcrTckdFOPdX2UKGgGR0BjqC8jAzpHaAdN6ANoCEdAnLRmXkYGdXV9lChoBkdAY/8KUmlZYGgHTegDaAhHQJy7fvJA+px1fZQoaAZHQGaAIVEd/8VoB03oA2gIR0CcxPJrcj7idX2UKGgGR0BiCJIlMRHxaAdN6ANoCEdAnM0DzErGznV9lChoBkdASBxb8m8dxWgHS1xoCEdAnM2lpGnXNHV9lChoBkdAYapirksBhmgHTegDaAhHQJzUzLIPsiV1fZQoaAZHQGGUZmh/RVpoB03oA2gIR0Cc29TlkpZwdX2UKGgGR0BmLFQO4G2UaAdN6ANoCEdAnOMKsU7CBXV9lChoBkdAYm/tgrpaBGgHTegDaAhHQJzqNhKDkEN1fZQoaAZHQGADAHmig01oB03oA2gIR0Cc8cV/+bVjdX2UKGgGR0BefQuyu6mPaAdN6ANoCEdAnPuHUYsND3V9lChoBkdASm2WfK6nSGgHS5poCEdAnPxpkK/mDHV9lChoBkdARkcTSLIgeWgHS4poCEdAnP03Z00WM3V9lChoBkdAYsZL6k6902gHTegDaAhHQJ0EcC4jKPp1fZQoaAZHQGfNh37k4m1oB03oA2gIR0CdC5eFL39KdX2UKGgGR0BlbXM2WIGhaAdN6ANoCEdAnRLVFc6eXnV9lChoBkdAY1UWuX/o7mgHTegDaAhHQJ0Z+9wm3OR1fZQoaAZHQGVKeBYmsvJoB03oA2gIR0CdITo1k1/EdX2UKGgGR0AmzZ+x4Y78aAdLfmgIR0CdIfCXhOxjdX2UKGgGR0BlkSb4Ju2raAdN6ANoCEdAnStGvOhTO3V9lChoBkdAYlMkIHC40GgHTegDaAhHQJ0zOYJE6T51fZQoaAZHQGidCeVcD8toB03oA2gIR0CdOm2OyVv/dX2UKGgGR0Bh1IQvpQk5aAdN6ANoCEdAnUGtb5dnkHV9lChoBkdAZPHp/PPcBWgHTegDaAhHQJ1JCJiy6c11fZQoaAZHQGa3FZHNHH5oB03oA2gIR0CdUDA5aNdadX2UKGgGR0BkBt7SiM5waAdN6ANoCEdAnVgHCfpUxXV9lChoBkdAZDlYwqRU3mgHTegDaAhHQJ1hasEJSix1fZQoaAZHQElYWN3np0RoB0t+aAhHQJ1iIuscQy11fZQoaAZHQGNpuzposZpoB03oA2gIR0CdaVlum78OdX2UKGgGR0BmG8NH6MzeaAdN6ANoCEdAnXCbyUcGT3V9lChoBkdAaUcKneizs2gHTegDaAhHQJ135azNUwV1fZQoaAZHQD6dO8CgbqBoB0uAaAhHQJ14o482aUl1fZQoaAZHQEMj7fpD/l1oB0uZaAhHQJ16w8p1A7h1fZQoaAZHQGUFk8zQ/otoB03oA2gIR0CdgfLr5ZbIdX2UKGgGR0Aqu3+dbxEwaAdLl2gIR0CdgtuzhP0qdX2UKGgGR0BkWwAhje9BaAdN6ANoCEdAnYqymEXcg3V9lChoBkdASLCTB68g6mgHS41oCEdAnYuzhcZ9/nV9lChoBkdAYQ7N1QqI8GgHTegDaAhHQJ2UutCAtnR1fZQoaAZHQGS8ApazNUxoB03oA2gIR0Cdm+cYqG1ydX2UKGgGR0Bh2UDQqqffaAdN6ANoCEdAnaM6ISDh+HV9lChoBkdAQ3XP9kz412gHS3FoCEdAnaPpDVpblnV9lChoBkdAYjs4pc5bQmgHTegDaAhHQJ2rK2b5M111fZQoaAZHQGXc+GXXyy5oB03oA2gIR0CdslVi4J/odX2UKGgGR0BhSuogmqo7aAdN6ANoCEdAnbm8IVuaW3V9lChoBkdAYU5WeYlY2mgHTegDaAhHQJ3Dv/WDpTx1fZQoaAZHQGXRQK0D2aloB03oA2gIR0Cdyw9XtBv8dX2UKGgGR0AbYdELH+6zaAdLXGgIR0Cdy5YFJQLvdX2UKGgGR0BhKrlFMIu5aAdN6ANoCEdAndLIHs1KoXV9lChoBkdAKqh9LHuJDWgHS3loCEdAndN/jjrAxnV9lChoBkdAY24f16E8JWgHTegDaAhHQJ3auzcAR051fZQoaAZHQEhbb349HMFoB0uJaAhHQJ3bgaHbh3t1fZQoaAZHQGYM58a4tpVoB03oA2gIR0Cd4rcEeQuFdX2UKGgGR0BURvt2LYPHaAdLcmgIR0Cd42B1cMVldX2UKGgGR0ALl2mpEQXiaAdLcmgIR0Cd5AiVSn+AdX2UKGgGR0BmupAIIF/yaAdN6ANoCEdAnetIFV1fV3V9lChoBkdAQkWanaWX1WgHS41oCEdAnewnh86V+3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVogEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQUDjIwufTJ7iIaFAurv4KaYwDaW5jlIoRJwyAqWT26hHlFKyZxOWWyQB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRKNDYUJnVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.05, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7881be572050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7881be5720e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7881be572170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7881be572200>", "_build": "<function ActorCriticPolicy._build at 0x7881be572290>", "forward": "<function ActorCriticPolicy.forward at 0x7881be572320>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7881be5723b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7881be572440>", "_predict": "<function ActorCriticPolicy._predict at 0x7881be5724d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7881be572560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7881be5725f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7881be572680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7881be513d00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1001472, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719313999270966596, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAADYVbsWPfU+glqdPYH+n75Ia7E9BaNdvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHOpH6/IsAiMAWyUTVwBjAF0lEdAngLMBIWgvnV9lChoBkdActW0E5hjOWgHTQYBaAhHQJ4EQ7GNrCZ1fZQoaAZHQHL+b5hz/6xoB0v9aAhHQJ4FtdgOSW91fZQoaAZHQHEDgZKnNxFoB00TAWgIR0CeCmGcFyJbdX2UKGgGR0ByUEKBun/DaAdL7GgIR0CeC7bWEsasdX2UKGgGR0BvIGUILPUsaAdL5WgIR0CeDQAXl8w6dX2UKGgGR0BzBa/j81n/aAdL+GgIR0CeDnAYpDu0dX2UKGgGR0BzTKRMewLWaAdNHgFoCEdAnhAMYZVGTnV9lChoBkdAcGJy/9Hc12gHS/loCEdAnhFytmtheHV9lChoBkdAcN3ExIre7GgHS+ZoCEdAnhM3ZPEbYXV9lChoBkdAck0A3T/hl2gHS+FoCEdAnhTWxD9fkXV9lChoBkdAcP6/nW8RMGgHS/JoCEdAnhsNKVY6n3V9lChoBkdAcF3/z8P4EmgHS+VoCEdAnhzZtWMjvHV9lChoBkdAccDCL/CIlGgHTQEBaAhHQJ4eTa24NI91fZQoaAZHQHLIl89fTkRoB00JAWgIR0CeH9ozeoDQdX2UKGgGR0Bw260w8GLUaAdL7GgIR0CeITIoE0SAdX2UKGgGR0Bypgs052haaAdNEwFoCEdAniLBXwLE1nV9lChoBkdAcIB29+PRzGgHS9xoCEdAniQDlkpZwHV9lChoBkdAcp7W8yvcJ2gHS+NoCEdAniVL+cYqG3V9lChoBkdAcLBejEehf2gHS+5oCEdAniaixFAmiXV9lChoBkdAcqRtpVS4v2gHS+toCEdAnisAzUI9knV9lChoBkdAcs9aB7NSqGgHS9poCEdAnixCaNMoMXV9lChoBkdAcxn2AXl8xGgHS+ZoCEdAni2WdNFjNXV9lChoBkdAcOTFCb+cY2gHTRwBaAhHQJ4vLIikftB1fZQoaAZHQG/Lmpda+vhoB0vnaAhHQJ4wgXUH6dl1fZQoaAZHQHIu0uDjBEdoB0v3aAhHQJ4x514gRsd1fZQoaAZHQHNI48hcJMRoB00JAWgIR0CeM2nuAqd6dX2UKGgGR0Bv8hazNUwSaAdNFAFoCEdAnjT87IT4+XV9lChoBkdAcywOhkAggWgHS/5oCEdAnjl6nFYMfHV9lChoBkdAcA/DEWIoE2gHS+NoCEdAnjrJFkQPJHV9lChoBkdATwRTER8MNWgHS3toCEdAnjt+kDZDiXV9lChoBkdAb/q7TUiIL2gHS/NoCEdAnjzk6HTJAHV9lChoBkdAcDfylvZRK2gHS9xoCEdAnj4j3ueBhHV9lChoBkdARGbLU1AJLWgHS6poCEdAnj8dCRfWtnV9lChoBkdAcMemUGFBY2gHS95oCEdAnkBk78vVVnV9lChoBkdAcdPXMyJsPGgHS+RoCEdAnkGv9YOlPHV9lChoBkdAcPnV+Zw4sGgHS+5oCEdAnkMMfeUILXV9lChoBkdAc1npKzzErGgHS/9oCEdAnkiYI0IkaHV9lChoBkdAcZX42S+xnmgHS/hoCEdAnkqixZ+x4nV9lChoBkdAcjHLs8gZCWgHS9RoCEdAnkxUfLcKxHV9lChoBkdAS+2JrLyMDWgHS4BoCEdAnk1SZv1lG3V9lChoBkdAcvKqEvkBCGgHTQ0BaAhHQJ5PZVdX1ap1fZQoaAZHQHJ5RXXAdn1oB0vRaAhHQJ5QmYG+sYF1fZQoaAZHQDS9rSE12q1oB0uzaAhHQJ5RnRnezld1fZQoaAZHQHPsNrKvFFVoB0vbaAhHQJ5S3EBKcut1fZQoaAZHQHCJURe1KGtoB0v2aAhHQJ5UVIlMRHx1fZQoaAZHQGy5Mf7rLQpoB0v3aAhHQJ5V3nlnyup1fZQoaAZHQHDi6LKmsNloB0v2aAhHQJ5aae18b711fZQoaAZHQHBFODvmYBxoB0vtaAhHQJ5bwYZVGTd1fZQoaAZHQHHpqPXCj1xoB00HAWgIR0CeXVTr3TNMdX2UKGgGR0BwW2ThYNiIaAdL02gIR0CeXocN6PbPdX2UKGgGR0By4+X8fmtAaAdL0WgIR0CeX7R5C4SZdX2UKGgGR0BOoYb0e2d/aAdLrmgIR0CeYLW9US7HdX2UKGgGR0BujjngYP5IaAdL1WgIR0CeYeg3974SdX2UKGgGR0BzMCA2AG0NaAdL32gIR0CeYycoH9m6dX2UKGgGR0Bx04xdpqREaAdL4mgIR0CeZG1tfoicdX2UKGgGR0By4B9G7SRbaAdL8WgIR0CeaOYLb5/LdX2UKGgGR0By8A8yN4qxaAdNFQFoCEdAnmp5j2BatHV9lChoBkdAcChww0wai2gHS+doCEdAnmvFiWmgrnV9lChoBkdAcQQL61stTWgHS/hoCEdAnm0y1Vo6CHV9lChoBkdAc6p36hxo7GgHS+JoCEdAnm57ThHby3V9lChoBkdAcjOkQf6oEWgHS+5oCEdAnm/W0NSZSnV9lChoBkdAcKrf8uSOimgHS8VoCEdAnnD0lzEJjXV9lChoBkdAbXNSzgMtsmgHS+5oCEdAnnJaaw2VFHV9lChoBkdAcbC0W/JvHmgHS/JoCEdAnnbIFJQLu3V9lChoBkdAbnnIz3yqdmgHS+NoCEdAnniAMH8jzXV9lChoBkdAcMTK3d9DyGgHTQYBaAhHQJ56YhUzbex1fZQoaAZHQHE1E87p3X9oB0vpaAhHQJ58I2MsH0N1fZQoaAZHQHAmCyY5T61oB0vmaAhHQJ5+E2ZRbbF1fZQoaAZHQG6uM189fTloB0vlaAhHQJ5/2Axzq8l1fZQoaAZHQHCuJJGvwE1oB00QAWgIR0CegfDxLCemdX2UKGgGR0BwPyrcTJyRaAdL72gIR0Ceg1VYp2ECdX2UKGgGR0BzHSV5a/yoaAdNEQFoCEdAnoThLGrCFnV9lChoBkdAQIcxj8UEgWgHS7RoCEdAnoju5OJtSHV9lChoBkdAcJ7DeTFERmgHS/FoCEdAnopbEDQqqnV9lChoBkdAciUENe+mFmgHS/JoCEdAnou4VuaWonV9lChoBkdAcMAsj3VTaWgHS91oCEdAnozyy6cy33V9lChoBkdAc7YtelbeM2gHS9hoCEdAno4vZIxxk3V9lChoBkdAcKHeWOZLI2gHS9doCEdAno9fV3EAHXV9lChoBkdAcCPlv60pmWgHTQ0BaAhHQJ6Q4d5prUN1fZQoaAZHQHEI/YBeXzFoB0vVaAhHQJ6SGlpGnXN1fZQoaAZHQHJwJzo2XLNoB0v9aAhHQJ6ThY9xIat1fZQoaAZHQHBSPf8/D+BoB0vuaAhHQJ6X+Yb83uN1fZQoaAZHQHMu0TDfm9xoB0vuaAhHQJ6ZaYTj/+91fZQoaAZHQEWbq9Gqgh9oB0uqaAhHQJ6aaN0eU6h1fZQoaAZHQHF3VFDv3JxoB0vaaAhHQJ6bprKvFFV1fZQoaAZHQG3nPhQ3xWloB0vUaAhHQJ6c0se4kNZ1fZQoaAZHQHJ5BwhnrY5oB00FAWgIR0Cenk/G2kSFdX2UKGgGR0BxI0PhAGB4aAdL0WgIR0Cen322oegddX2UKGgGR0Bwk6BpYcNpaAdL22gIR0CeoLhfBvaUdX2UKGgGR0ByTvZh8YygaAdNDgFoCEdAnqJCIpH7QHV9lChoBkdAcR3u2Zy+6GgHTQgBaAhHQJ6m7buc+aB1fZQoaAZHQG2Cv114gRtoB0vWaAhHQJ6oIAGSpzd1fZQoaAZHQHAiitzS1E5oB0vfaAhHQJ6pX4sVclh1fZQoaAZHQHJ8rgjyFwloB0vKaAhHQJ6q+Xt0FKV1fZQoaAZHQHGo9oWYWtVoB0vUaAhHQJ6sd7HAAQx1fZQoaAZHQHFlUeQuEmJoB0v/aAhHQJ6uSPp6hQF1fZQoaAZHQHEL2s3hn8NoB0vpaAhHQJ6wS5TZQHl1fZQoaAZHQHEuRG6PKdRoB0viaAhHQJ6yFJ+UhV51fZQoaAZHQHEAflyR0U5oB0vVaAhHQJ6zTRzBAOd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2445, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVogEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQUDjIwufTJ7iIaFAurv4KaYwDaW5jlIoRJwyAqWT26hHlFKyZxOWWyQB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRKNDYUJnVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:108e988776386a186877b10d6708ebe30826754dc746ac568ee0aefd177a4292
3
- size 147675
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1c7ba824da59ca422308d364c745e09bd0f387846df56bf9cf8f6e2c47580cb
3
+ size 147599
ppo-LunarLander-v2/data CHANGED
@@ -19,19 +19,19 @@
19
  "__abstractmethods__": "frozenset()",
20
  "_abc_impl": "<_abc._abc_data object at 0x7881be513d00>"
21
  },
22
- "verbose": 0,
23
  "policy_kwargs": {},
24
- "num_timesteps": 1000448,
25
  "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1719311287530883095,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAJprWTyuSZq6+6oXOhdSvjUX4tq6vkkvuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -41,17 +41,17 @@
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": -0.00044800000000000395,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVLAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGVols54nneMAWyUTegDjAF0lEdAm6PEbT+efHV9lChoBkdAYRhKTSsr/mgHTegDaAhHQJuslqxkd3l1fZQoaAZHQGcendoFmnRoB03oA2gIR0Cbs7p0OmSAdX2UKGgGR0Bu4TxEv0yyaAdNGwFoCEdAm7a2elKsdXV9lChoBkdAZZF6gM+eOGgHTegDaAhHQJu98eii7Cl1fZQoaAZHQCmWyZ8a4tpoB0uMaAhHQJu+vrOZ9eB1fZQoaAZHQGPvhyS3b21oB03oA2gIR0CbyBtwJgLJdX2UKGgGR0Bi0nhS9/SZaAdN6ANoCEdAm8+a9sabWnV9lChoBkdAYlqQo1DSgGgHTegDaAhHQJvW1yxRl6J1fZQoaAZHQGXh59d/rjZoB03oA2gIR0Cb3hStNi6QdX2UKGgGR0BiiTCHh0heaAdN6ANoCEdAm+U8Ti83/HV9lChoBkdAZwSlLOAy22gHTegDaAhHQJvsbDziCJ51fZQoaAZHQGMuPDgqEvloB03oA2gIR0Cb9FT5ftx/dX2UKGgGR0Bo33hIe5nUaAdN6ANoCEdAm/3j72tdRnV9lChoBkdAY9jRoAXEZWgHTegDaAhHQJwFH39JjDt1fZQoaAZHQGVTAc1fmcRoB03oA2gIR0CcDE0W/JvHdX2UKGgGR0Am6p1ie/YbaAdLYWgIR0CcDOK9f1HwdX2UKGgGR0BkRi4x1xKhaAdN6ANoCEdAnBQwNsnAqXV9lChoBkdAZYCLBsQ/YGgHTegDaAhHQJwbWUr08Nh1fZQoaAZHQEM6VEd/8VJoB0uQaAhHQJwcL/Ot4iZ1fZQoaAZHQGYC6E8JUo9oB03oA2gIR0CcI151/2CedX2UKGgGR0Bl2m9rXUYsaAdN6ANoCEdAnCzEO/cnE3V9lChoBkdAYW3s9B8hLWgHTegDaAhHQJw1Eotthux1fZQoaAZHQEv8UOd5IH1oB0t8aAhHQJw11UOuq3p1fZQoaAZHQETeqU/wAlxoB0ubaAhHQJw2xZ8rqdJ1fZQoaAZHQGDxwwTM7ltoB03oA2gIR0CcPj55qubJdX2UKGgGR0Bk2L79AHE/aAdN6ANoCEdAnEV26ClJpXV9lChoBkdAYxor2g398GgHTegDaAhHQJxMrFPznRt1fZQoaAZHQGJEraVUuL9oB03oA2gIR0CcU/mgJ1JUdX2UKGgGR0BlQom5UcXFaAdN6ANoCEdAnFwkPH1e0HV9lChoBkdAaktnvDxb0WgHTegDaAhHQJxlKcoYvWZ1fZQoaAZHQGL1BMi8nNRoB03oA2gIR0CcbGX5nDiwdX2UKGgGR0BmFJ1HOKO1aAdN6ANoCEdAnHOGQXAM2HV9lChoBkdAZuXw+dK/VWgHTegDaAhHQJx6oXyiEg51fZQoaAZHQGxUZIpYs/ZoB0vqaAhHQJx7/61stTV1fZQoaAZHQGr22CNCJGhoB00bAWgIR0CcfaTBZZB+dX2UKGgGR0AwfPKdQO4HaAdLZmgIR0CcfjpAD7qIdX2UKGgGR0Bga6GBWgezaAdN6ANoCEdAnIW06DGtIXV9lChoBkdAY2F3os7MgWgHTegDaAhHQJyN6Oo5xR51fZQoaAZHQGTrUQCjk+5oB03oA2gIR0CclxtmL9/CdX2UKGgGR0BCcA3tKIznaAdLaGgIR0Ccl72SdOIqdX2UKGgGR0BjZPiBGx2TaAdN6ANoCEdAnJ7e/k/8mHV9lChoBkdAYZ4XvYvnKWgHTegDaAhHQJymEsXizcB1fZQoaAZHQGGy6cy31BdoB03oA2gIR0CcrTckdFOPdX2UKGgGR0BjqC8jAzpHaAdN6ANoCEdAnLRmXkYGdXV9lChoBkdAY/8KUmlZYGgHTegDaAhHQJy7fvJA+px1fZQoaAZHQGaAIVEd/8VoB03oA2gIR0CcxPJrcj7idX2UKGgGR0BiCJIlMRHxaAdN6ANoCEdAnM0DzErGznV9lChoBkdASBxb8m8dxWgHS1xoCEdAnM2lpGnXNHV9lChoBkdAYapirksBhmgHTegDaAhHQJzUzLIPsiV1fZQoaAZHQGGUZmh/RVpoB03oA2gIR0Cc29TlkpZwdX2UKGgGR0BmLFQO4G2UaAdN6ANoCEdAnOMKsU7CBXV9lChoBkdAYm/tgrpaBGgHTegDaAhHQJzqNhKDkEN1fZQoaAZHQGADAHmig01oB03oA2gIR0Cc8cV/+bVjdX2UKGgGR0BefQuyu6mPaAdN6ANoCEdAnPuHUYsND3V9lChoBkdASm2WfK6nSGgHS5poCEdAnPxpkK/mDHV9lChoBkdARkcTSLIgeWgHS4poCEdAnP03Z00WM3V9lChoBkdAYsZL6k6902gHTegDaAhHQJ0EcC4jKPp1fZQoaAZHQGfNh37k4m1oB03oA2gIR0CdC5eFL39KdX2UKGgGR0BlbXM2WIGhaAdN6ANoCEdAnRLVFc6eXnV9lChoBkdAY1UWuX/o7mgHTegDaAhHQJ0Z+9wm3OR1fZQoaAZHQGVKeBYmsvJoB03oA2gIR0CdITo1k1/EdX2UKGgGR0AmzZ+x4Y78aAdLfmgIR0CdIfCXhOxjdX2UKGgGR0BlkSb4Ju2raAdN6ANoCEdAnStGvOhTO3V9lChoBkdAYlMkIHC40GgHTegDaAhHQJ0zOYJE6T51fZQoaAZHQGidCeVcD8toB03oA2gIR0CdOm2OyVv/dX2UKGgGR0Bh1IQvpQk5aAdN6ANoCEdAnUGtb5dnkHV9lChoBkdAZPHp/PPcBWgHTegDaAhHQJ1JCJiy6c11fZQoaAZHQGa3FZHNHH5oB03oA2gIR0CdUDA5aNdadX2UKGgGR0BkBt7SiM5waAdN6ANoCEdAnVgHCfpUxXV9lChoBkdAZDlYwqRU3mgHTegDaAhHQJ1hasEJSix1fZQoaAZHQElYWN3np0RoB0t+aAhHQJ1iIuscQy11fZQoaAZHQGNpuzposZpoB03oA2gIR0CdaVlum78OdX2UKGgGR0BmG8NH6MzeaAdN6ANoCEdAnXCbyUcGT3V9lChoBkdAaUcKneizs2gHTegDaAhHQJ135azNUwV1fZQoaAZHQD6dO8CgbqBoB0uAaAhHQJ14o482aUl1fZQoaAZHQEMj7fpD/l1oB0uZaAhHQJ16w8p1A7h1fZQoaAZHQGUFk8zQ/otoB03oA2gIR0CdgfLr5ZbIdX2UKGgGR0Aqu3+dbxEwaAdLl2gIR0CdgtuzhP0qdX2UKGgGR0BkWwAhje9BaAdN6ANoCEdAnYqymEXcg3V9lChoBkdASLCTB68g6mgHS41oCEdAnYuzhcZ9/nV9lChoBkdAYQ7N1QqI8GgHTegDaAhHQJ2UutCAtnR1fZQoaAZHQGS8ApazNUxoB03oA2gIR0Cdm+cYqG1ydX2UKGgGR0Bh2UDQqqffaAdN6ANoCEdAnaM6ISDh+HV9lChoBkdAQ3XP9kz412gHS3FoCEdAnaPpDVpblnV9lChoBkdAYjs4pc5bQmgHTegDaAhHQJ2rK2b5M111fZQoaAZHQGXc+GXXyy5oB03oA2gIR0CdslVi4J/odX2UKGgGR0BhSuogmqo7aAdN6ANoCEdAnbm8IVuaW3V9lChoBkdAYU5WeYlY2mgHTegDaAhHQJ3Dv/WDpTx1fZQoaAZHQGXRQK0D2aloB03oA2gIR0Cdyw9XtBv8dX2UKGgGR0AbYdELH+6zaAdLXGgIR0Cdy5YFJQLvdX2UKGgGR0BhKrlFMIu5aAdN6ANoCEdAndLIHs1KoXV9lChoBkdAKqh9LHuJDWgHS3loCEdAndN/jjrAxnV9lChoBkdAY24f16E8JWgHTegDaAhHQJ3auzcAR051fZQoaAZHQEhbb349HMFoB0uJaAhHQJ3bgaHbh3t1fZQoaAZHQGYM58a4tpVoB03oA2gIR0Cd4rcEeQuFdX2UKGgGR0BURvt2LYPHaAdLcmgIR0Cd42B1cMVldX2UKGgGR0ALl2mpEQXiaAdLcmgIR0Cd5AiVSn+AdX2UKGgGR0BmupAIIF/yaAdN6ANoCEdAnetIFV1fV3V9lChoBkdAQkWanaWX1WgHS41oCEdAnewnh86V+3VlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 3908,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
@@ -77,14 +77,14 @@
77
  "_np_random": "Generator(PCG64)"
78
  },
79
  "n_envs": 1,
80
- "n_steps": 1024,
81
- "gamma": 0.99,
82
  "gae_lambda": 0.98,
83
- "ent_coef": 0.05,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
- "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
 
19
  "__abstractmethods__": "frozenset()",
20
  "_abc_impl": "<_abc._abc_data object at 0x7881be513d00>"
21
  },
22
+ "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 1001472,
25
  "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1719313999270966596,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAADYVbsWPfU+glqdPYH+n75Ia7E9BaNdvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.0014719999999999178,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV9AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHOpH6/IsAiMAWyUTVwBjAF0lEdAngLMBIWgvnV9lChoBkdActW0E5hjOWgHTQYBaAhHQJ4EQ7GNrCZ1fZQoaAZHQHL+b5hz/6xoB0v9aAhHQJ4FtdgOSW91fZQoaAZHQHEDgZKnNxFoB00TAWgIR0CeCmGcFyJbdX2UKGgGR0ByUEKBun/DaAdL7GgIR0CeC7bWEsasdX2UKGgGR0BvIGUILPUsaAdL5WgIR0CeDQAXl8w6dX2UKGgGR0BzBa/j81n/aAdL+GgIR0CeDnAYpDu0dX2UKGgGR0BzTKRMewLWaAdNHgFoCEdAnhAMYZVGTnV9lChoBkdAcGJy/9Hc12gHS/loCEdAnhFytmtheHV9lChoBkdAcN3ExIre7GgHS+ZoCEdAnhM3ZPEbYXV9lChoBkdAck0A3T/hl2gHS+FoCEdAnhTWxD9fkXV9lChoBkdAcP6/nW8RMGgHS/JoCEdAnhsNKVY6n3V9lChoBkdAcF3/z8P4EmgHS+VoCEdAnhzZtWMjvHV9lChoBkdAccDCL/CIlGgHTQEBaAhHQJ4eTa24NI91fZQoaAZHQHLIl89fTkRoB00JAWgIR0CeH9ozeoDQdX2UKGgGR0Bw260w8GLUaAdL7GgIR0CeITIoE0SAdX2UKGgGR0Bypgs052haaAdNEwFoCEdAniLBXwLE1nV9lChoBkdAcIB29+PRzGgHS9xoCEdAniQDlkpZwHV9lChoBkdAcp7W8yvcJ2gHS+NoCEdAniVL+cYqG3V9lChoBkdAcLBejEehf2gHS+5oCEdAniaixFAmiXV9lChoBkdAcqRtpVS4v2gHS+toCEdAnisAzUI9knV9lChoBkdAcs9aB7NSqGgHS9poCEdAnixCaNMoMXV9lChoBkdAcxn2AXl8xGgHS+ZoCEdAni2WdNFjNXV9lChoBkdAcOTFCb+cY2gHTRwBaAhHQJ4vLIikftB1fZQoaAZHQG/Lmpda+vhoB0vnaAhHQJ4wgXUH6dl1fZQoaAZHQHIu0uDjBEdoB0v3aAhHQJ4x514gRsd1fZQoaAZHQHNI48hcJMRoB00JAWgIR0CeM2nuAqd6dX2UKGgGR0Bv8hazNUwSaAdNFAFoCEdAnjT87IT4+XV9lChoBkdAcywOhkAggWgHS/5oCEdAnjl6nFYMfHV9lChoBkdAcA/DEWIoE2gHS+NoCEdAnjrJFkQPJHV9lChoBkdATwRTER8MNWgHS3toCEdAnjt+kDZDiXV9lChoBkdAb/q7TUiIL2gHS/NoCEdAnjzk6HTJAHV9lChoBkdAcDfylvZRK2gHS9xoCEdAnj4j3ueBhHV9lChoBkdARGbLU1AJLWgHS6poCEdAnj8dCRfWtnV9lChoBkdAcMemUGFBY2gHS95oCEdAnkBk78vVVnV9lChoBkdAcdPXMyJsPGgHS+RoCEdAnkGv9YOlPHV9lChoBkdAcPnV+Zw4sGgHS+5oCEdAnkMMfeUILXV9lChoBkdAc1npKzzErGgHS/9oCEdAnkiYI0IkaHV9lChoBkdAcZX42S+xnmgHS/hoCEdAnkqixZ+x4nV9lChoBkdAcjHLs8gZCWgHS9RoCEdAnkxUfLcKxHV9lChoBkdAS+2JrLyMDWgHS4BoCEdAnk1SZv1lG3V9lChoBkdAcvKqEvkBCGgHTQ0BaAhHQJ5PZVdX1ap1fZQoaAZHQHJ5RXXAdn1oB0vRaAhHQJ5QmYG+sYF1fZQoaAZHQDS9rSE12q1oB0uzaAhHQJ5RnRnezld1fZQoaAZHQHPsNrKvFFVoB0vbaAhHQJ5S3EBKcut1fZQoaAZHQHCJURe1KGtoB0v2aAhHQJ5UVIlMRHx1fZQoaAZHQGy5Mf7rLQpoB0v3aAhHQJ5V3nlnyup1fZQoaAZHQHDi6LKmsNloB0v2aAhHQJ5aae18b711fZQoaAZHQHBFODvmYBxoB0vtaAhHQJ5bwYZVGTd1fZQoaAZHQHHpqPXCj1xoB00HAWgIR0CeXVTr3TNMdX2UKGgGR0BwW2ThYNiIaAdL02gIR0CeXocN6PbPdX2UKGgGR0By4+X8fmtAaAdL0WgIR0CeX7R5C4SZdX2UKGgGR0BOoYb0e2d/aAdLrmgIR0CeYLW9US7HdX2UKGgGR0BujjngYP5IaAdL1WgIR0CeYeg3974SdX2UKGgGR0BzMCA2AG0NaAdL32gIR0CeYycoH9m6dX2UKGgGR0Bx04xdpqREaAdL4mgIR0CeZG1tfoicdX2UKGgGR0By4B9G7SRbaAdL8WgIR0CeaOYLb5/LdX2UKGgGR0By8A8yN4qxaAdNFQFoCEdAnmp5j2BatHV9lChoBkdAcChww0wai2gHS+doCEdAnmvFiWmgrnV9lChoBkdAcQQL61stTWgHS/hoCEdAnm0y1Vo6CHV9lChoBkdAc6p36hxo7GgHS+JoCEdAnm57ThHby3V9lChoBkdAcjOkQf6oEWgHS+5oCEdAnm/W0NSZSnV9lChoBkdAcKrf8uSOimgHS8VoCEdAnnD0lzEJjXV9lChoBkdAbXNSzgMtsmgHS+5oCEdAnnJaaw2VFHV9lChoBkdAcbC0W/JvHmgHS/JoCEdAnnbIFJQLu3V9lChoBkdAbnnIz3yqdmgHS+NoCEdAnniAMH8jzXV9lChoBkdAcMTK3d9DyGgHTQYBaAhHQJ56YhUzbex1fZQoaAZHQHE1E87p3X9oB0vpaAhHQJ58I2MsH0N1fZQoaAZHQHAmCyY5T61oB0vmaAhHQJ5+E2ZRbbF1fZQoaAZHQG6uM189fTloB0vlaAhHQJ5/2Axzq8l1fZQoaAZHQHCuJJGvwE1oB00QAWgIR0CegfDxLCemdX2UKGgGR0BwPyrcTJyRaAdL72gIR0Ceg1VYp2ECdX2UKGgGR0BzHSV5a/yoaAdNEQFoCEdAnoThLGrCFnV9lChoBkdAQIcxj8UEgWgHS7RoCEdAnoju5OJtSHV9lChoBkdAcJ7DeTFERmgHS/FoCEdAnopbEDQqqnV9lChoBkdAciUENe+mFmgHS/JoCEdAnou4VuaWonV9lChoBkdAcMAsj3VTaWgHS91oCEdAnozyy6cy33V9lChoBkdAc7YtelbeM2gHS9hoCEdAno4vZIxxk3V9lChoBkdAcKHeWOZLI2gHS9doCEdAno9fV3EAHXV9lChoBkdAcCPlv60pmWgHTQ0BaAhHQJ6Q4d5prUN1fZQoaAZHQHEI/YBeXzFoB0vVaAhHQJ6SGlpGnXN1fZQoaAZHQHJwJzo2XLNoB0v9aAhHQJ6ThY9xIat1fZQoaAZHQHBSPf8/D+BoB0vuaAhHQJ6X+Yb83uN1fZQoaAZHQHMu0TDfm9xoB0vuaAhHQJ6ZaYTj/+91fZQoaAZHQEWbq9Gqgh9oB0uqaAhHQJ6aaN0eU6h1fZQoaAZHQHF3VFDv3JxoB0vaaAhHQJ6bprKvFFV1fZQoaAZHQG3nPhQ3xWloB0vUaAhHQJ6c0se4kNZ1fZQoaAZHQHJ5BwhnrY5oB00FAWgIR0Cenk/G2kSFdX2UKGgGR0BxI0PhAGB4aAdL0WgIR0Cen322oegddX2UKGgGR0Bwk6BpYcNpaAdL22gIR0CeoLhfBvaUdX2UKGgGR0ByTvZh8YygaAdNDgFoCEdAnqJCIpH7QHV9lChoBkdAcR3u2Zy+6GgHTQgBaAhHQJ6m7buc+aB1fZQoaAZHQG2Cv114gRtoB0vWaAhHQJ6oIAGSpzd1fZQoaAZHQHAiitzS1E5oB0vfaAhHQJ6pX4sVclh1fZQoaAZHQHJ8rgjyFwloB0vKaAhHQJ6q+Xt0FKV1fZQoaAZHQHGo9oWYWtVoB0vUaAhHQJ6sd7HAAQx1fZQoaAZHQHFlUeQuEmJoB0v/aAhHQJ6uSPp6hQF1fZQoaAZHQHEL2s3hn8NoB0vpaAhHQJ6wS5TZQHl1fZQoaAZHQHEuRG6PKdRoB0viaAhHQJ6yFJ+UhV51fZQoaAZHQHEAflyR0U5oB0vVaAhHQJ6zTRzBAOd1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 2445,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
77
  "_np_random": "Generator(PCG64)"
78
  },
79
  "n_envs": 1,
80
+ "n_steps": 2048,
81
+ "gamma": 0.999,
82
  "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
+ "n_epochs": 5,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4eebef956ae755ab3aeaa8780dd36a18362ab8d3663bd0869555f6a60fa39313
3
  size 88362
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b2bf9bf8b1e9f7ce3a88bd81c2ea511776257901cc2e80a751f814285a8f0eb
3
  size 88362
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d10dd2b319725fdb7e4b9e4edb72300fcef8f2abe407c9ed54eb6508b6df1fa4
3
  size 43762
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f39849d9e18364561f26c603e1feccaced1102aedad5f3783cc6a7d2e6c632bc
3
  size 43762
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 204.8760577, "std_reward": 103.62863369230921, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-25T11:12:03.276424"}
 
1
+ {"mean_reward": 253.304826, "std_reward": 56.300143237495156, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-25T11:45:44.320094"}