riccardomusmeci's picture
Update README.md
e0da393 verified
|
raw
history blame
1.55 kB
---
license: apache-2.0
tags:
- mlx
- mlx-image
- vision
- image-classification
datasets:
- imagenet-1k
library_name: mlx-image
---
# Wide ResNet50 2
WideResNet50 2 is a computer vision model trained on imagenet-1k representing an improvement of ResNet architecture. It was introduced in the paper [Wide Residual Networks](https://arxiv.org/abs/1605.07146).
Disclaimer: This is a porting of the torchvision model weights to Apple MLX Framework.
## How to use
```bash
pip install mlx-image
```
Here is how to use this model for image classification:
```python
from mlxim.model import create_model
from mlxim.io import read_rgb
from mlxim.transform import ImageNetTransform
transform = ImageNetTransform(train=False, img_size=224)
x = transform(read_rgb("cat.png"))
x = mx.expand_dims(x, 0)
model = create_model("wide_resnet50_2")
model.eval()
logits = model(x)
```
You can also use the embeds from last conv layer:
```python
from mlxim.model import create_model
from mlxim.io import read_rgb
from mlxim.transform import ImageNetTransform
transform = ImageNetTransform(train=False, img_size=224)
x = transform(read_rgb("cat.png"))
x = mx.expand_dims(x, 0)
# first option
model = create_model("wide_resnet50_2", num_classes=0)
model.eval()
embeds = model(x)
# second option
model = create_model("wide_resnet50_2")
model.eval()
embeds = model.features(x)
```
## Model Comparison
Explore the metrics of this model in [mlx-image model results](https://github.com/riccardomusmeci/mlx-image/blob/main/results/results-imagenet-1k.csv).