Image Classification
mlx-image
Safetensors
MLX
vision
resnet50-mlxim / README.md
riccardomusmeci's picture
Update README.md
fdd1bde verified
metadata
license: apache-2.0
tags:
  - mlx
  - mlx-image
  - vision
  - image-classification
datasets:
  - imagenet-1k
library_name: mlx-image

ResNet50

ResNet50 is a computer vision model trained on imagenet-1k. It was introduced in the paper Deep Residual Learning for Image Recognition and first released in this repository.

Disclaimer: This is a porting of the torchvision model weights to Apple MLX Framework.

How to use

pip install mlx-image

Here is how to use this model for image classification:

from mlxim.model import create_model
from mlxim.io import read_rgb
from mlxim.transform import ImageNetTransform

transform = ImageNetTransform(train=False, img_size=224)
x = transform(read_rgb("cat.png"))
x = mx.expand_dims(x, 0)

model = create_model("resnet50")
model.eval()

logits = model(x)

You can also use the embeds from last conv layer:

from mlxim.model import create_model
from mlxim.io import read_rgb
from mlxim.transform import ImageNetTransform

transform = ImageNetTransform(train=False, img_size=224)
x = transform(read_rgb("cat.png"))
x = mx.expand_dims(x, 0)

# first option
model = create_model("resnet50", num_classes=0)
model.eval()

embeds = model(x)

# second option
model = create_model("resnet50")
model.eval()

embeds = model.get_features(x)

Model Comparison

Explore the metrics of this model in mlx-image model results.