WaveCut's picture
4c7248025c3e98cefaaae0aaa6fccd3f311a59e0f0359cbc6d13ac9e273a740a
055cce2 verified
|
raw
history blame
954 Bytes
metadata
license: mit
language:
  - multilingual
tags:
  - nlp
  - mlx
base_model: numind/NuExtract-1.5
pipeline_tag: text-generation
inference: true

mlx-community/numind-NuExtract-1.5-MLX-4bit

The Model mlx-community/numind-NuExtract-1.5-MLX-4bit was converted to MLX format from numind/NuExtract-1.5 using mlx-lm version 0.20.1.

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/numind-NuExtract-1.5-MLX-4bit")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)